A stable discontinuity-enriched finite element method for 3-D problems containing weak and strong discontinuities

Research output: Contribution to journalArticleScientificpeer-review

7 Citations (Scopus)
51 Downloads (Pure)

Abstract

A new enriched finite element technique, named the Discontinuity-Enriched Finite Element Method (DE-FEM), was introduced recently for solving problems with both weak and strong discontinuities in 2-D. In this mesh-independent procedure, enriched degrees of freedom are added to new nodes collocated at the intersections between discontinuities and the sides of finite elements of the background mesh. In this work we extend DE-FEM to 3-D and describe in detail the implementation of a geometric engine capable of handling interactions between discontinuities and the background mesh. Several numerical examples in linear elastic fracture mechanics demonstrate the capability and performance of DE-FEM in handling discontinuities in a fully mesh-independent manner. We compare convergence properties and the ability to extract stress intensity factors with standard FEM. Most importantly, we show DE-FEM provides a stable formulation with regard to the condition number of the resulting system stiffness matrix.

Original languageEnglish
Pages (from-to)1097-1123
JournalComputer Methods in Applied Mechanics and Engineering
Volume355
DOIs
Publication statusPublished - 2019

Keywords

  • DE-FEM
  • Enriched finite element methods
  • Fracture mechanics
  • GFEM
  • Strong discontinuities
  • XFEM

Fingerprint Dive into the research topics of 'A stable discontinuity-enriched finite element method for 3-D problems containing weak and strong discontinuities'. Together they form a unique fingerprint.

Cite this