A Statistical analysis on the system performance of a bluetooth low energy indoor positioning system in a 3D environment

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

1 Citation (Scopus)
57 Downloads (Pure)

Abstract

Since GPS tends to fail for indoor positioning purposes, alternative methods like indoor positioning systems (IPS) based on Bluetooth low energy (BLE) are developing rapidly. Generally, IPS are deployed in environments covered with obstacles such as furniture, walls, people and electronics influencing the signal propagation. The major factor influencing the system performance and to acquire optimal positioning results is the geometry of the beacons. The geometry of the beacons is limited to the available infrastructure that can be deployed (number of beacons, basestations and tags), which leads to the following challenge: Given a limited number of beacons, where should they be placed in a specified indoor environment, such that the geometry contributes to optimal positioning results? This paper aims to propose a statistical model that is able to select the optimal configuration that satisfies the user requirements in terms of precision. The model requires the definition of a chosen 3D space (in our case 7 × 10 × 6 meter), number of beacons, possible user tag locations and a performance threshold (e.g. required precision). For any given set of beacon and receiver locations, the precision, internal-and external reliability can be determined on forehand. As validation, the modeled precision has been compared with observed precision results. The measurements have been performed with an IPS of BlooLoc at a chosen set of user tag locations for a given geometric configuration. Eventually, the model is able to select the optimal geometric configuration out of millions of possible configurations based on a performance threshold (e.g. required precision).

Original languageEnglish
Title of host publicationISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
PublisherISPRS
Pages319-326
Number of pages8
VolumeIV-2/W4
DOIs
Publication statusPublished - 2017
EventISPRS Geospatial Week 2017 - Wuhan, China
Duration: 18 Sep 201722 Sep 2017
http://www.isprs.org/documents/geoweek.aspx

Conference

ConferenceISPRS Geospatial Week 2017
CountryChina
CityWuhan
Period18/09/1722/09/17
Internet address

Keywords

  • 3D space
  • Bluetooth low energy
  • Indoor positioning system
  • optimal configuration
  • precision
  • system performance
  • theoretical design computations

Fingerprint Dive into the research topics of 'A Statistical analysis on the system performance of a bluetooth low energy indoor positioning system in a 3D environment'. Together they form a unique fingerprint.

  • Cite this

    Haagmans, G. G., Verhagen, A. A., Voûte, R. L., & Verbree, E. (2017). A Statistical analysis on the system performance of a bluetooth low energy indoor positioning system in a 3D environment. In ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences (Vol. IV-2/W4, pp. 319-326). ISPRS. https://doi.org/10.5194/isprs-annals-IV-2-W4-319-2017