A Systematic Method to Generate Effective STLs for the In-Field Test of CAN Bus Controllers

Felipe Augusto da Silva, Riccardo Cantoro, Said Hamdioui, Sandro Sartoni*, Christian Sauer, Matteo Sonza Reorda

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

53 Downloads (Pure)

Abstract

In order to match the strict reliability requirements mandated by regulations and standards adopted in the automotive sector, as well as other domains where safety is a major concern, the in-field testing of the most critical devices, including microcontrollers and systems on chip, is a crucial task. Since the controller area network (CAN) bus is widely used in the automotive domain, the corresponding controller ubiquitously appears in all these devices. This paper presents a generic and systematic methodology to develop an effective in-field test procedure for CAN controllers based on a functional approach (i.e., on the adoption of self-test libraries). The method can be customized to match the requirements coming from different scenarios, and allows the test engineer to maximize the achieved fault coverage in terms of structural faults in the different cases. The experimental results we gathered on a representative CAN controller model show that, given two typical testing scenarios, we are able to detect (Formula presented.) and (Formula presented.) of stuck-at faults, respectively, hence demonstrating the effectiveness of the proposed approach.

Original languageEnglish
Article number2481
Pages (from-to)1-19
Number of pages19
JournalElectronics (Switzerland)
Volume11
Issue number16
DOIs
Publication statusPublished - 2022

Keywords

  • automotive electronics
  • online test
  • safety
  • self-test libraries
  • software-based self-test

Fingerprint

Dive into the research topics of 'A Systematic Method to Generate Effective STLs for the In-Field Test of CAN Bus Controllers'. Together they form a unique fingerprint.

Cite this