TY - JOUR
T1 - A systematic study of unsupervised domain adaptation for robust human-activity recognition
AU - Chang, Youngjae
AU - Mathur, Akhil
AU - Isopoussu, Anton
AU - Song, Junehwa
AU - Kawsar, Fahim
PY - 2020
Y1 - 2020
N2 - Wearable sensors are increasingly becoming the primary interface for monitoring human activities. However, in order to scale human activity recognition (HAR) using wearable sensors to million of users and devices, it is imperative that HAR computational models are robust against real-world heterogeneity in inertial sensor data. In this paper, we study the problem of wearing diversity which pertains to the placement of the wearable sensor on the human body, and demonstrate that even state-of-the-art deep learning models are not robust against these factors. The core contribution of the paper lies in presenting a first-of-its-kind in-depth study of unsupervised domain adaptation (UDA) algorithms in the context of wearing diversity - we develop and evaluate three adaptation techniques on four HAR datasets to evaluate their relative performance towards addressing the issue of wearing diversity. More importantly, we also do a careful analysis to learn the downsides of each UDA algorithm and uncover several implicit data-related assumptions without which these algorithms suffer a major degradation in accuracy. Taken together, our experimental findings caution against using UDA as a silver bullet for adapting HAR models to new domains, and serve as practical guidelines for HAR practitioners as well as pave the way for future research on domain adaptation in HAR.
AB - Wearable sensors are increasingly becoming the primary interface for monitoring human activities. However, in order to scale human activity recognition (HAR) using wearable sensors to million of users and devices, it is imperative that HAR computational models are robust against real-world heterogeneity in inertial sensor data. In this paper, we study the problem of wearing diversity which pertains to the placement of the wearable sensor on the human body, and demonstrate that even state-of-the-art deep learning models are not robust against these factors. The core contribution of the paper lies in presenting a first-of-its-kind in-depth study of unsupervised domain adaptation (UDA) algorithms in the context of wearing diversity - we develop and evaluate three adaptation techniques on four HAR datasets to evaluate their relative performance towards addressing the issue of wearing diversity. More importantly, we also do a careful analysis to learn the downsides of each UDA algorithm and uncover several implicit data-related assumptions without which these algorithms suffer a major degradation in accuracy. Taken together, our experimental findings caution against using UDA as a silver bullet for adapting HAR models to new domains, and serve as practical guidelines for HAR practitioners as well as pave the way for future research on domain adaptation in HAR.
KW - Human Activity Recognition
KW - Unsupervised Domain Adaptation
KW - Wearing Diversity
UR - http://www.scopus.com/inward/record.url?scp=85089761056&partnerID=8YFLogxK
U2 - 10.1145/3380985
DO - 10.1145/3380985
M3 - Article
AN - SCOPUS:85089761056
SN - 2474-9567
VL - 4
JO - Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
JF - Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
IS - 1
M1 - 3380985
ER -