Abstract
Wide bandgap (WBG) semiconductor technologies enable significant progress in the emergence of power modules. Power cycling at elevated temperatures causes crack or delamination failure, especially at the die-attached bonded interface in the long term. Therefore, the in-situ reliability investigation of power modules, materials, and semiconductor packages is of great significance for modern industries. The silicon carbide's higher bandgap energy, intrinsic thermal conductivity, and mechanical strength make it a great candidate for the next generation of semiconductor, designed to operate in harsh conditions. In this study, a thin-film reconfigurable silicon carbide (SiC) thermal test chip (TTC) is designed and fabricated for reliability assessment in harsh environments. The proposed TTC realizes in-situ power/thermal cycling tests at elevated temperatures as well as characterization of novel materials such as nanoparticle-based sintering materials in die-attach technology and high-temperature-compatible epoxy molding compounds. The chip is equipped with thin-film platinum microheaters to realize modular power mappings, and platinum resistive temperature detectors (RTD) to examine the thermal reliability by monitoring the precise changes of the internal junction-to-case thermal resistance.
Original language | English |
---|---|
Title of host publication | Proceedings of the 2023 IEEE 73rd Electronic Components and Technology Conference (ECTC) |
Publisher | IEEE |
Pages | 1309-1313 |
Number of pages | 5 |
ISBN (Electronic) | 979-8-3503-3498-2 |
ISBN (Print) | 979-8-3503-3499-9 |
DOIs | |
Publication status | Published - 2023 |
Event | 73rd IEEE Electronic Components and Technology Conference, ECTC 2023 - Orlando, United States Duration: 30 May 2023 → 2 Jun 2023 |
Publication series
Name | Proceedings - Electronic Components and Technology Conference |
---|---|
Volume | 2023-May |
ISSN (Print) | 0569-5503 |
Conference
Conference | 73rd IEEE Electronic Components and Technology Conference, ECTC 2023 |
---|---|
Country/Territory | United States |
City | Orlando |
Period | 30/05/23 → 2/06/23 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- bandgap energy
- die-attach
- in-situ reliability investigation
- junction-to-case thermal resistance
- nanoparticle-based sintering
- power cycling
- power modules
- resistive temperature detectors
- thermal conductivity
- Wide bandgap semiconductor technology