A toolkit for rapid CRISPR-SpCas9 assisted construction of hexose-transport-deficient Saccharomyces cerevisiae strains

Melanie Wijsman, Michal A. Swiat, Wesley L. Marques, Johanna K. Hettinga, Marcel van den Broek, Pilar de la Torre Cortés, Robert Mans, Jack T. Pronk, Jean Marc Daran, Pascale Daran-Lapujade

Research output: Contribution to journalArticleScientificpeer-review

24 Citations (Scopus)
176 Downloads (Pure)

Abstract

Hexose transporter-deficient yeast strains are valuable testbeds for the study of sugar transport by native and heterologous transporters. In the popular Saccharomyces cerevisiae strain EBY.VW4000, deletion of 21 transporters completely abolished hexose transport. However, repeated use of the LoxP/Cre system in successive deletion rounds also resulted in major chromosomal rearrangements, gene loss and phenotypic changes. In the present study, CRISPR/SpCas9 was used to delete the 21 hexose transporters in an S. cerevisiae strain from the CEN.PK family in only three deletion rounds, using 11 unique guide RNAs. Even upon prolonged cultivation, the resulting strain IMX1812 (CRISPR-Hxt0) was unable to consume glucose, while its growth rate on maltose was the same as that of a strain equipped with a full set of hexose transporters. Karyotyping and whole-genome sequencing of the CRISPR-Hxt0 strain with Illumina and Oxford Nanopore technologies did not reveal chromosomal rearrangements or other unintended mutations besides a few SNPs. This study provides a new, 'genetically unaltered' hexose transporter-deficient strain and supplies a CRISPR toolkit for removing all hexose transporter genes from most S. cerevisiae laboratory strains in only three transformation rounds.

Original languageEnglish
Number of pages12
JournalFEMS Yeast Research
Volume19
Issue number1
DOIs
Publication statusPublished - 2018

Fingerprint

Dive into the research topics of 'A toolkit for rapid CRISPR-SpCas9 assisted construction of hexose-transport-deficient Saccharomyces cerevisiae strains'. Together they form a unique fingerprint.

Cite this