Research output per year
Research output per year
M. Javad Mohajeri*, Wilbert de Kluijver, Rudy L.J. Helmons, Cees van Rhee, Dingena L. Schott
Research output: Contribution to journal › Article › Scientific › peer-review
The traditional design approach of grabs and other bulk handling equipment consists of manufacturing and testing physical prototypes. A novel design approach is to use a co-simulation of MultiBody Dynamics (MBD) and Discrete Element Method (DEM), in which the virtual prototype of a new concept interacts with bulk solids. Therefore, this study develops and validates a full-scale co-simulation that models the grabbing process of cohesive and stress-history dependent iron ore. First, by executing in-situ measurements during the unloading of a vessel, grab-relevant bulk properties of the cargo, such as penetration resistance, are determined. Second, full-scale grabbing experiments are conducted in the cargo hold, which allows the process to be recorded in realistic operational conditions. Third, full-scale co-simulation is set up using the material model that has been calibrated based on an elasto-plastic adhesive contact model. Fourth, the co-simulation is validated by comparing its predictions to experimental data from various aspects, such as the force in cables and the torque in winches. The validated co-simulation proves that the stress-dependent behaviour of cohesive cargo as it interacts with the grab could be captured successfully. Valuable information such as a grab's kinematics and dynamics, as well as the porosity distribution of collected bulk solids, can be extracted from the simulation, supporting engineers to enhance the design and operation of equipment.
Original language | English |
---|---|
Pages (from-to) | 1157-1169 |
Journal | Advanced Powder Technology |
Volume | 32 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2021 |
Research output: Thesis › Dissertation (TU Delft)