TY - JOUR
T1 - A weighted least squares approach to retrieve aerosol layer height over bright surfaces applied to GOME-2 measurements of the oxygen A band for forest fire cases over Europe
AU - Nanda, Swadhin
AU - Pepijn Veefkind, J.
AU - De Graaf, Martin
AU - Sneep, Maarten
AU - Stammes, Piet
AU - De Haan, Johan F.
AU - Sanders, Abram F.J.
AU - Apituley, Arnoud
AU - Tuinder, Olaf
AU - Levelt, Pieternel F.
PY - 2018/6/7
Y1 - 2018/6/7
N2 - This paper presents a weighted least squares approach to retrieve aerosol layer height from top-of-atmosphere reflectance measurements in the oxygen A band (758-770g nm) over bright surfaces. A property of the measurement error covariance matrix is discussed, due to which photons travelling from the surface are given a higher preference over photons that scatter back from the aerosol layer. This is a potential source of biases in the estimation of aerosol properties over land, which can be mitigated by revisiting the design of the measurement error covariance matrix. The alternative proposed in this paper, which we call the dynamic scaling method, introduces a scene-dependent and wavelength-dependent modification in the measurement signal-to-noise ratio in order to influence this matrix. This method is generally applicable to other retrieval algorithms using weighted least squares. To test this method, synthetic experiments are done in addition to application to GOME-2A and GOME-2B measurements of the oxygen A band over the August 2010 Russian wildfires and the October 2017 Portugal wildfire plume over western Europe.
AB - This paper presents a weighted least squares approach to retrieve aerosol layer height from top-of-atmosphere reflectance measurements in the oxygen A band (758-770g nm) over bright surfaces. A property of the measurement error covariance matrix is discussed, due to which photons travelling from the surface are given a higher preference over photons that scatter back from the aerosol layer. This is a potential source of biases in the estimation of aerosol properties over land, which can be mitigated by revisiting the design of the measurement error covariance matrix. The alternative proposed in this paper, which we call the dynamic scaling method, introduces a scene-dependent and wavelength-dependent modification in the measurement signal-to-noise ratio in order to influence this matrix. This method is generally applicable to other retrieval algorithms using weighted least squares. To test this method, synthetic experiments are done in addition to application to GOME-2A and GOME-2B measurements of the oxygen A band over the August 2010 Russian wildfires and the October 2017 Portugal wildfire plume over western Europe.
UR - http://www.scopus.com/inward/record.url?scp=85048317333&partnerID=8YFLogxK
UR - http://resolver.tudelft.nl/uuid:15773fec-e985-4548-bc66-66cc14ecabef
U2 - 10.5194/amt-11-3263-2018
DO - 10.5194/amt-11-3263-2018
M3 - Article
AN - SCOPUS:85048317333
SN - 1867-1381
VL - 11
SP - 3263
EP - 3280
JO - Atmospheric Measurement Techniques
JF - Atmospheric Measurement Techniques
IS - 6
ER -