TY - JOUR
T1 - Absorption heat pump cycles with NH3 – ionic liquid working pairs
AU - Wang, Meng
AU - Infante Ferreira, Carlos A.
PY - 2017
Y1 - 2017
N2 - Ionic liquids (ILs), as novel absorbents, draw considerable attention for their potential roles in replacing water or LiBr aqueous solutions in conventional NH3/H2O or H2O/LiBr absorption refrigeration or heat pump cycles. In this paper, performances of 9 currently investigated NH3/ILs pairs are calculated and compared in terms of their applications in the single-effect absorption heat pumps (AHPs) for the floor heating of buildings. Among them, 4 pairs were reported for the first time in absorption cycles (including one which cannot operate for this specific heat pump application). The highest coefficient of performance (COP) was found for the working pair using [mmim][DMP] (1.79), and pairs with [emim][Tf2N] (1.74), [emim][SCN] (1.73) and [bmim][BF4] (1.70) also had better performances than that of the NH3/H2O pair (1.61). Furthermore, an optimization was conducted to investigate the performance of an ideal NH3/IL pair. The COP of the optimized mixture could reach 1.84. Discussions on the contributions of the generator heat and optimization results revealed some factors that could affect the performance. It could be concluded that the ideal IL candidates should show high absorption capabilities, large solubility difference between inlet and outlet of the generator, low molecular weights and low heat capacities. In addition, an economic analysis of the AHP using NH3/[emim][SCN] working pair with plate heat exchangers was carried out based on heat transfer calculations. The results indicated that the NH3/IL AHP is economically feasible. The efforts of heat transfer optimization in the solution heat exchanger and a low expense of ILs can help the IL-based AHP systems to become more promising.
AB - Ionic liquids (ILs), as novel absorbents, draw considerable attention for their potential roles in replacing water or LiBr aqueous solutions in conventional NH3/H2O or H2O/LiBr absorption refrigeration or heat pump cycles. In this paper, performances of 9 currently investigated NH3/ILs pairs are calculated and compared in terms of their applications in the single-effect absorption heat pumps (AHPs) for the floor heating of buildings. Among them, 4 pairs were reported for the first time in absorption cycles (including one which cannot operate for this specific heat pump application). The highest coefficient of performance (COP) was found for the working pair using [mmim][DMP] (1.79), and pairs with [emim][Tf2N] (1.74), [emim][SCN] (1.73) and [bmim][BF4] (1.70) also had better performances than that of the NH3/H2O pair (1.61). Furthermore, an optimization was conducted to investigate the performance of an ideal NH3/IL pair. The COP of the optimized mixture could reach 1.84. Discussions on the contributions of the generator heat and optimization results revealed some factors that could affect the performance. It could be concluded that the ideal IL candidates should show high absorption capabilities, large solubility difference between inlet and outlet of the generator, low molecular weights and low heat capacities. In addition, an economic analysis of the AHP using NH3/[emim][SCN] working pair with plate heat exchangers was carried out based on heat transfer calculations. The results indicated that the NH3/IL AHP is economically feasible. The efforts of heat transfer optimization in the solution heat exchanger and a low expense of ILs can help the IL-based AHP systems to become more promising.
KW - Absorption cycle
KW - Economic analysis
KW - Heat pump
KW - ILs
KW - NH
KW - Optimization
UR - http://resolver.tudelft.nl/uuid:5fa33d4a-8c02-4293-bc3a-eec0ac435488
UR - http://www.scopus.com/inward/record.url?scp=85026845598&partnerID=8YFLogxK
U2 - 10.1016/j.apenergy.2017.07.074
DO - 10.1016/j.apenergy.2017.07.074
M3 - Article
AN - SCOPUS:85026845598
VL - 204
SP - 819
EP - 830
JO - Applied Energy
JF - Applied Energy
SN - 0306-2619
ER -