TY - JOUR
T1 - Abstracting the Traffic of Nonlinear Event-Triggered Control Systems
AU - Delimpaltadakis, Giannis
AU - Mazo, Manuel
N1 - Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
PY - 2023
Y1 - 2023
N2 - Scheduling communication traffic in networks of event-triggered control (ETC) systems is challenging, as their sampling times are unknown, hindering application of ETC in networks. In previous work, finite-state abstractions were created, capturing the sampling behavior of linear time-invariant (LTI) ETC systems with quadratic triggering functions. Offering an infinite-horizon look to ETC systems' sampling patterns, such abstractions can be used for scheduling of ETC traffic. Here, we significantly extend this framework, by abstracting perturbed uncertain nonlinear ETC systems with general triggering functions. To construct an ETC system's abstraction: 1) the state space is partitioned into regions; 2) for each region, an interval is determined, containing all intersampling times of points in the region; and 3) the abstraction's transitions are determined through reachability analysis. To determine intervals and transitions, we devise algorithms based on reachability analysis. For partitioning, we propose an approach based on isochronous manifolds, resulting into tighter intervals and providing control over them, thus containing the abstraction's nondeterminism. Simulations showcase our developments.
AB - Scheduling communication traffic in networks of event-triggered control (ETC) systems is challenging, as their sampling times are unknown, hindering application of ETC in networks. In previous work, finite-state abstractions were created, capturing the sampling behavior of linear time-invariant (LTI) ETC systems with quadratic triggering functions. Offering an infinite-horizon look to ETC systems' sampling patterns, such abstractions can be used for scheduling of ETC traffic. Here, we significantly extend this framework, by abstracting perturbed uncertain nonlinear ETC systems with general triggering functions. To construct an ETC system's abstraction: 1) the state space is partitioned into regions; 2) for each region, an interval is determined, containing all intersampling times of points in the region; and 3) the abstraction's transitions are determined through reachability analysis. To determine intervals and transitions, we devise algorithms based on reachability analysis. For partitioning, we propose an approach based on isochronous manifolds, resulting into tighter intervals and providing control over them, thus containing the abstraction's nondeterminism. Simulations showcase our developments.
KW - Control systems
KW - Linear systems
KW - Reachability analysis
KW - Timing
KW - Trajectory
KW - Uncertainty
KW - Writing
UR - http://www.scopus.com/inward/record.url?scp=85135756266&partnerID=8YFLogxK
U2 - 10.1109/TAC.2022.3195128
DO - 10.1109/TAC.2022.3195128
M3 - Article
AN - SCOPUS:85135756266
SN - 0018-9286
VL - 68
SP - 3744
EP - 3751
JO - IEEE Transactions on Automatic Control
JF - IEEE Transactions on Automatic Control
IS - 6
ER -