TY - JOUR
T1 - Acoustic Characterization of the CLINIcell for Ultrasound Contrast Agent Studies
AU - Beekers, Ines
AU - van Rooij, Tom
AU - van der Steen, Antonius F.W.
AU - de Jong, Nico
AU - Verweij, Martin D.
AU - Kooiman, Klazina
PY - 2018
Y1 - 2018
N2 - Ultrasound contrast agents consist of gas-filled coated microbubbles that oscillate upon ultrasound insonification. Their characteristic oscillatory response provides contrast enhancement for imaging and has the potential to locally enhance drug delivery. Since microbubble response depends on the local acoustic pressure, an ultrasound compatible chamber is needed to study their behavior and the underlying drug delivery pathways. In this study, we determined the amplitude of the acoustic pressure in the CLINIcell, an optically transparent chamber suitable for cell culture. The pressure field was characterized based on microbubble response recorded using the Brandaris 128 ultra-high speed camera and an iterative processing method. The results were compared to a control experiment performed in an OptiCell, which is conventionally used in microbubble studies. Microbubbles in the CLINIcell responded in a controlled manner, comparable to those in the OptiCell. For frequencies from 1 to 4 MHz, the mean pressure amplitude was -5.4 dB with respect to the externally applied field. The predictable ultrasound pressure demonstrates the potential of the CLINIcell as an optical, ultrasound, and cell culture compatible device to study microbubble oscillation behavior and ultrasound-mediated drug delivery.
AB - Ultrasound contrast agents consist of gas-filled coated microbubbles that oscillate upon ultrasound insonification. Their characteristic oscillatory response provides contrast enhancement for imaging and has the potential to locally enhance drug delivery. Since microbubble response depends on the local acoustic pressure, an ultrasound compatible chamber is needed to study their behavior and the underlying drug delivery pathways. In this study, we determined the amplitude of the acoustic pressure in the CLINIcell, an optically transparent chamber suitable for cell culture. The pressure field was characterized based on microbubble response recorded using the Brandaris 128 ultra-high speed camera and an iterative processing method. The results were compared to a control experiment performed in an OptiCell, which is conventionally used in microbubble studies. Microbubbles in the CLINIcell responded in a controlled manner, comparable to those in the OptiCell. For frequencies from 1 to 4 MHz, the mean pressure amplitude was -5.4 dB with respect to the externally applied field. The predictable ultrasound pressure demonstrates the potential of the CLINIcell as an optical, ultrasound, and cell culture compatible device to study microbubble oscillation behavior and ultrasound-mediated drug delivery.
KW - Acoustic characterization
KW - Acoustics
KW - Biomedical optical imaging
KW - Drug delivery
KW - drug delivery
KW - Integrated optics
KW - Optical sensors
KW - Optical variables control
KW - ultra-high speed imaging
KW - Ultrasonic imaging
KW - ultrasound contrast agents
UR - http://www.scopus.com/inward/record.url?scp=85056738667&partnerID=8YFLogxK
U2 - 10.1109/TUFFC.2018.2881724
DO - 10.1109/TUFFC.2018.2881724
M3 - Article
AN - SCOPUS:85056738667
SN - 0885-3010
VL - 66
SP - 244
EP - 246
JO - IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
JF - IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
IS - 1
ER -