TY - JOUR
T1 - Active Cluster Wake Mixing
AU - Gutknecht, Jonas
AU - Becker, Marcus
AU - Taschner, Emanuel
AU - Stipa, Sebastiano
AU - Allaerts, Dries
AU - Viré, Axelle
AU - Van Wingerden, Jan Willem
PY - 2024
Y1 - 2024
N2 - In recent years, the relevance of the interaction between neighboring wind farms has grown steadily. As one farm extracts energy from the wind, a downstream one can systematically experience lower wind speeds which threatens the economic viability of the farm. Significant progress has been made in understanding these farm-farm wake interactions, but we still lack methodologies to mitigate their undesired effects. In this study, we introduce Active Cluster Wake Mixing (ACWM). This novel method aims to accelerate the recovery of the cluster wake using dynamic control actions: By exciting the thrust of the individual turbines depending on their relative location, we generate non-uniform patterns of energy extraction. Phase offsets between the individual excitation signals propagate these regions through the wind farm. This results in large-scale velocity gradients inside the farm, which also affect the flow in the cluster wake region. An in-depth exploration and optimization of ACWM requires significant computational effort. Therefore, we compare three different wind farm modeling approaches in Large Eddy Simulations (LES) that differ in their computational costs regarding their suitability for further exploration of ACWM. For this purpose, we use an unoptimized ACWM scheme with two different excitation frequencies. For the first time ever we successfully show that ACWM manipulates the flow inside the wind farm with favorable effects on the wake velocity. We also demonstrate that the modeling of cluster wakes is challenging and has a significant effect on the potential gain.
AB - In recent years, the relevance of the interaction between neighboring wind farms has grown steadily. As one farm extracts energy from the wind, a downstream one can systematically experience lower wind speeds which threatens the economic viability of the farm. Significant progress has been made in understanding these farm-farm wake interactions, but we still lack methodologies to mitigate their undesired effects. In this study, we introduce Active Cluster Wake Mixing (ACWM). This novel method aims to accelerate the recovery of the cluster wake using dynamic control actions: By exciting the thrust of the individual turbines depending on their relative location, we generate non-uniform patterns of energy extraction. Phase offsets between the individual excitation signals propagate these regions through the wind farm. This results in large-scale velocity gradients inside the farm, which also affect the flow in the cluster wake region. An in-depth exploration and optimization of ACWM requires significant computational effort. Therefore, we compare three different wind farm modeling approaches in Large Eddy Simulations (LES) that differ in their computational costs regarding their suitability for further exploration of ACWM. For this purpose, we use an unoptimized ACWM scheme with two different excitation frequencies. For the first time ever we successfully show that ACWM manipulates the flow inside the wind farm with favorable effects on the wake velocity. We also demonstrate that the modeling of cluster wakes is challenging and has a significant effect on the potential gain.
UR - http://www.scopus.com/inward/record.url?scp=85197382886&partnerID=8YFLogxK
U2 - 10.1088/1742-6596/2767/9/092052
DO - 10.1088/1742-6596/2767/9/092052
M3 - Conference article
AN - SCOPUS:85197382886
SN - 1742-6588
VL - 2767
JO - Journal of Physics: Conference Series
JF - Journal of Physics: Conference Series
IS - 9
M1 - 092052
T2 - 2024 Science of Making Torque from Wind, TORQUE 2024
Y2 - 29 May 2024 through 31 May 2024
ER -