Abstract
Edge applications are increasingly empowered by deep neural networks (DNN) and face the challenges of adapting or retraining models for the changes in input data domains and learning tasks. The existing techniques to enable DNN retraining on edge devices are to configure the memory-related hyperparameters, termed m-hyperparameters, via batch size reduction, parameter freezing, and gradient checkpoint. While those methods show promising results for static DNNs, little is known about how to online and opportunistically optimize all their m-hyperparameters, especially for retraining tasks of edge applications. In this paper, we propose, MPOptimizer, which jointly optimizes an ensemble of m-hyperparameters according to the input distribution and available edge resources at runtime. The key feature of MPOptimizer is to easily emulate the execution of retraining tasks under different m-hyperparameters and thus effectively estimate their influence on task performance. We implement MPOptimizer on prevalent DNNs and demonstrate its effectiveness against state-of-the-art techniques, i.e. successfully find the best configuration that improves model accuracy by an average of 13% (up to 25.3%) while reducing memory and training time by 4.1x and 5.3x under the same model accuracies.
Original language | English |
---|---|
Article number | 107600 |
Number of pages | 10 |
Journal | Future Generation Computer Systems |
Volume | 164 |
DOIs | |
Publication status | Published - 2025 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- Deep neural networks (DNN)
- Edge computing
- Memory-related hyperparameters
- Model retraining