Adaptive Risk-Tendency: Nano Drone Navigation in Cluttered Environments with Distributional Reinforcement Learning

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

5 Citations (Scopus)
34 Downloads (Pure)

Abstract

Enabling the capability of assessing risk and making risk-aware decisions is essential to applying reinforcement learning to safety-critical robots like drones. In this paper, we investigate a specific case where a nano quadcopter robot learns to navigate an apriori-unknown cluttered environment under partial observability. We present a distributional reinforcement learning framework to generate adaptive risk-tendency policies. Specifically, we propose to use lower tail conditional variance of the learnt return distribution as intrinsic uncertainty estimation, and use exponentially weighted average forecasting (EWAF) to adapt the risk-tendency in accordance with the estimated uncertainty. In simulation and real-world empirical results, we show that (1) the most effective risk-tendency varies across states, (2) the agent with adaptive risk-tendency achieves superior performance compared to risk-neutral policy or risk-averse policy baselines. Code and video can be found in this repository: https://github.com/tudelft/risk-sensitive-rl.git

Original languageEnglish
Title of host publicationProceedings - ICRA 2023
Subtitle of host publicationIEEE International Conference on Robotics and Automation
PublisherIEEE
Pages7198-7204
Number of pages7
ISBN (Electronic)9798350323658
DOIs
Publication statusPublished - 2023
Event2023 IEEE International Conference on Robotics and Automation, ICRA 2023 - London, United Kingdom
Duration: 29 May 20232 Jun 2023

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
Volume2023-May
ISSN (Print)1050-4729

Conference

Conference2023 IEEE International Conference on Robotics and Automation, ICRA 2023
Country/TerritoryUnited Kingdom
CityLondon
Period29/05/232/06/23

Bibliographical note

Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Fingerprint

Dive into the research topics of 'Adaptive Risk-Tendency: Nano Drone Navigation in Cluttered Environments with Distributional Reinforcement Learning'. Together they form a unique fingerprint.

Cite this