Adaptive state estimation and real-time tracking for control of a flexible wing with machine learning and AI

T. Mkhoyan

Research output: Contribution to conferenceOther


Advancements in intelligent aircraft controller design, paired with increasingly flexible and efficient aircrafts concepts, creates the need for the development of novel (smart) adaptive sensing suitable for aeroelastic state estimation. In contrast to rigid states, aeroelastic state estimation requires more measurement points (displacements and forces) across the span to capture the vibrational shapes of the wing undergoing excitations. A potentially universal and non-invasive approach is visual tracking. In this study, a method was developed and tested with the purpose of reducing the effort and cost associated with state estimation of flexible aeroelastic structures. Do so, visual information is used to estimate the elastic states real-time such that these can be provided as feedback to the controller for in-flight performance optimization. The method combines KCF (Kernelized Correlation Filter), which is a purely visual filter, with an augmented Kalman Filter to learn the parameters of the system on-line and account for the dynamics of the motion. Results from wind tunnel-test and flight-test are discussed using an embedded computing system. Further investigations are made on how to learn to predict displacements with deep learning using a convolutional neural network and laser vibrometer data as ground truth.
Original languageEnglish
Number of pages44
Publication statusPublished - 2019
EventGlobal Innovation Forum 2019: Transforming Intelligence - Dvin Hotel Complex, 40 Paronyan Street, Yerevan 0015, Armenia, Yerevan , Armenia
Duration: 16 Oct 201918 Oct 2019


ConferenceGlobal Innovation Forum 2019: Transforming Intelligence
Internet address


Dive into the research topics of 'Adaptive state estimation and real-time tracking for control of a flexible wing with machine learning and AI'. Together they form a unique fingerprint.

Cite this