Additively manufactured space-filling meta-implants

H. M.A. Kolken*, C. P. de Jonge, T. van der Sloten, A. Fontecha Garcia, B. Pouran, K. Willemsen, H. Weinans, A. A. Zadpoor

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

20 Citations (Scopus)
62 Downloads (Pure)

Abstract

The unprecedented properties of meta-biomaterials could pave the way for the development of life-lasting orthopedic implants. Here, we used non-auxetic meta-biomaterials to address the shortcomings of the current treatment options in acetabular revision surgery. Due to the severe bone deficiencies and poor bone quality, it can be very challenging to acquire adequate initial implant stability and long-term fixation. More advanced treatments, such as patient-specific implants, do guarantee the initial stability, but are formidably expensive and may eventually fail due to stress shielding. We, therefore, developed meta-implants furnished with a deformable porous outer layer. Upon implantation, this layer plastically deforms into the defects, thereby improving the initial stability and homogeneously stimulating the surrounding bone. We first studied the space-filling behavior of additively manufactured pure titanium lattices, based on six different unit cells, in a compression test complemented with full-field strain measurements. The diamond, body-centered cubic, and rhombic dodecahedron unit cells were eventually selected for the design of the deformable porous outer layer. Each design came in three different relative density profiles, namely maximum (MAX), functionally graded (FG), and minimum (MIN). After their compression in bone-mimicking molds with simulated acetabular defects, the space-filling behavior of the implants was evaluated using load-displacement curves, micro-CT images, and 3D reconstructions. The meta-implants with an FG diamond infill exhibited the most promising space-filling behavior. However, the required push-in forces exceed the impact forces currently applied in surgery. Future research should, therefore, focus on design optimization, to improve the space-filling behavior and to facilitate the implantation process for orthopedic surgeons. Statement of significance: Ideally, orthopedic implants would last for the entire lifetime of the patient. Unfortunately, they rarely do. Critically sized defects are a common sight in the revision of acetabular cups, and rather difficult to treat. The permanent deformation of lattice structures can be used to create shape-morphing implants that would fill up the defect site, and thereby restore the physiological loading conditions. Bending-dominated structures were incorporated in the porous outer layer of the space-filling meta-implants for their considerable lateral expansion in response to axial compression. A functionally graded density offered structural integrity at the joint while enhancing the deformability at the bone-implant interface. With the use of a more ductile metal, CP-Ti, these meta-implants could be deformed without strut failure.

Original languageEnglish
Pages (from-to)345-357
JournalActa Biomaterialia
Volume125
DOIs
Publication statusPublished - 2021

Keywords

  • Acetabular cup
  • Meta-biomaterials
  • Meta-implants
  • Non-auxetic
  • Shape-matching

Fingerprint

Dive into the research topics of 'Additively manufactured space-filling meta-implants'. Together they form a unique fingerprint.

Cite this