Addressing Voltage Sag Contributions from an Optimally Sized Industrial Hybrid Power System in the Netherlands

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

Abstract

Industry plays a significant role in the energy transition due to its share of energy consumption. More complex energy systems are proposed to accelerate the energy transition, including coupling renewable energy sources and energy storage to supply part of the industrial loads locally. In this work, we used a multi-objective genetic algorithm to optimally size an industrial hybrid power system comprising a PV system, a battery energy storage system, and a diesel generator to minimise energy costs and overall equivalent CO2 emissions. The results suggest that the system does not require high power and capacity components to minimise the energy cost and equivalent CO2 emissions, highlighting the importance of the EMS strategy. In our case scenario, the optimal HPS reduced the emission cost by 46.7 % and the energy cost by 8.7 %. For the EMS, we proposed a rolling horizon average approach, which defines a setpoint for the power exchanged with the grid to minimise its change rate in time. The EMS dispatched the power to minimise the sudden changes in the demand from the network, with a power allocation priority order of PV, BESS, and generator. We also evaluated the effect of adding the optimally sized hybrid power system into a CIGRE medium-voltage distribution network, using a real industrial load profile for each node. The hybrid power system improved the voltage sag on the hybrid power energy system node and its neighbouring nodes.
Original languageEnglish
Title of host publicationProceedings of the 2024 Energy Conversion Congress & Expo Europe (ECCE Europe)
PublisherIEEE
Number of pages6
ISBN (Electronic)979-8-3503-6444-6
ISBN (Print)979-8-3503-6445-3
DOIs
Publication statusPublished - 2024
Event2024 Energy Conversion Congress & Expo Europe (ECCE Europe) - Darmstadt, Germany
Duration: 2 Sept 20246 Sept 2024

Conference

Conference2024 Energy Conversion Congress & Expo Europe (ECCE Europe)
Country/TerritoryGermany
CityDarmstadt
Period2/09/246/09/24

Bibliographical note

Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Keywords

  • Energy Management System]
  • Genetic Algorithms
  • Hybrid Power System
  • Mosaik
  • Voltage Sag

Fingerprint

Dive into the research topics of 'Addressing Voltage Sag Contributions from an Optimally Sized Industrial Hybrid Power System in the Netherlands'. Together they form a unique fingerprint.

Cite this