Aerodynamic Design of a Flying V Aircraft in Transonic Conditions

Y.A. Laar*, D.M. Atherstone, J. Benad, Roelof Vos

*Corresponding author for this work

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

23 Downloads (Pure)

Abstract

The Flying V is a long-range, flying-wing aircraft where payload and fuel both reside in a V-shaped, crescent wing with large winglets that double as vertical tail planes. The objective of this study is to maximize the lift-to-drag (L/D) ratio of the Flying V in cruise conditions, i.e. CL= 0.26, M = 0.85 and to investigate its off-design performance in high-subsonic conditions. This is done by manually modifying the design parameters that describe the outer mold line of the Flying V and assessing the aerodynamic performance by means of computational fluid dynamics. A 15-million cell, third-order MUSCL, Reynolds-Averaged Navier Stokes solver with the Menter SST turbulence model is used to estimate the aerodynamic coefficients. This numerical model is validated using the experimental data of the ONERA M6 wing. A new, CATIA-based, parametrization of the Flying V is the starting point of the design. Three manual design phases improve the aerodynamic performance while satisfying all constraints. Design modifications include an increase in camber and aft-loading of the wing around 40% of the semispan and improved airfoil sections on the outboard wing generating the required lift coefficient towards an elliptical lift distribution. The twist distribution at the wing-winglet junction is optimized to reduce wave drag. This has resulted in an improvement of L/D from 20.3 from previous studies to 24.2 for the final version, while reducing the cruise angle of attack from 5.2 to 3.6 degrees. The drag divergence Mach number is estimated at 0.925.
Original languageEnglish
Title of host publicationProceedings of the AIAA SCITECH 2024 Forum
PublisherAmerican Institute of Aeronautics and Astronautics Inc. (AIAA)
Number of pages23
ISBN (Electronic)978-1-62410-711-5
DOIs
Publication statusPublished - 2024
EventAIAA SCITECH 2024 Forum - Orlando, United States
Duration: 8 Jan 202412 Jan 2024

Conference

ConferenceAIAA SCITECH 2024 Forum
Country/TerritoryUnited States
CityOrlando
Period8/01/2412/01/24

Fingerprint

Dive into the research topics of 'Aerodynamic Design of a Flying V Aircraft in Transonic Conditions'. Together they form a unique fingerprint.

Cite this