Aerodynamic interaction effects of tip-mounted propellers installed on the horizontal tailplane

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

10 Citations (Scopus)
67 Downloads (Pure)

Abstract

This paper addresses the effects of propeller installation on the aerodynamic performance of a tailplane featuring tip-mounted propellers. A model of a low aspect ratio tailplane equipped with an elevator and a tip-mounted propeller was installed in a low-speed wind-tunnel. Measurements were taken with an external balance and surface pressure taps to determine the aerodynamic characteristics of the tailplane, while the flowfield in the wake of the model was investigated using particle-image velocimetry. The experimental data are supported by CFD analyses, involving both transient simulations of the full-blade configuration and steady-state simulations the propeller replaced by an actuator-disk model. The upstream effects on the propeller time-average and time-accurate thrust and normal-forces are found to be limited for different tailplane operating conditions. It is shown that for a given propeller rotation direction, the load distribution on the tailplane is highly dependent on the direction of elevator deflection. The rotation direction of the tailplane tip-vortex relative to the propeller swirl therefore significantly affects the integral loads on the tailplane, resulting in differences in the normal-force gradient and elevator effectiveness.

Original languageEnglish
Title of host publicationAIAA Aerospace Sciences Meeting
PublisherAmerican Institute of Aeronautics and Astronautics Inc. (AIAA)
Number of pages20
Edition210059
ISBN (Electronic)9781624105241
DOIs
Publication statusPublished - 2018
EventAIAA Aerospace Sciences Meeting, 2018 - Kissimmee, United States
Duration: 8 Jan 201812 Jan 2018

Conference

ConferenceAIAA Aerospace Sciences Meeting, 2018
CountryUnited States
CityKissimmee
Period8/01/1812/01/18

Fingerprint

Dive into the research topics of 'Aerodynamic interaction effects of tip-mounted propellers installed on the horizontal tailplane'. Together they form a unique fingerprint.

Cite this