Air–water properties of unsteady breaking bores part 1: Novel Eulerian and Lagrangian velocity measurements using intrusive and non-intrusive techniques

Rui Shi*, Davide Wüthrich, Hubert Chanson

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

3 Citations (Scopus)
6 Downloads (Pure)

Abstract

Transient motion, turbulence and bubble dynamics make any velocity quantification extremely difficult in unsteady gas–liquid flows. In the present study, novel Eulerian and Lagrangian techniques of velocimetry were developed, using both intrusive and non-intrusive measurements. The selected unsteady gas–liquid flow was a breaking bore, featured with a transient motion, air entrainment and coherent structures. Intrusively, Eulerian probe measurements resulted to the development of a single bubble event detection (SBED) technique in unsteady air–water flows. Non-intrusively, the motion of air–water pattern was detected using a novel particle tracking velocimetry (PTV). Both velocities obtained using SBED and PTV techniques were validated against the established optical flow (OF) results, achieving consistent velocity data among the three techniques. The filtering criteria of the SBED and PTV techniques were discussed, showing the best options in the breaking bore. It is concluded that the most robust velocity measurements in gas–liquid flow are achieved with consistent velocity data between the SBED, PTV and OF techniques.

Original languageEnglish
Article number104338
JournalInternational Journal of Multiphase Flow
Volume159
DOIs
Publication statusPublished - 2023

Bibliographical note

Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Keywords

  • Breaking bore
  • Dual-tip phase detection probe
  • Optical flow
  • Particle tracking velocimetry
  • Single bubble event detection
  • Unsteady gas–liquid flow

Fingerprint

Dive into the research topics of 'Air–water properties of unsteady breaking bores part 1: Novel Eulerian and Lagrangian velocity measurements using intrusive and non-intrusive techniques'. Together they form a unique fingerprint.

Cite this