TY - JOUR
T1 - Algebraic dynamic multilevel method for embedded discrete fracture model (F-ADM)
AU - HosseiniMehr, Mousa
AU - Cusini, Matteo
AU - Vuik, Cornelis
AU - Hajibeygi, Hadi
N1 - Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
PY - 2018
Y1 - 2018
N2 - We present an algebraic dynamic multilevel method for multiphase flow in heterogeneous fractured porous media (F-ADM), where fractures are resolved at fine scale with an embedded discrete modelling approach. This fine-scale discrete system employs independent fine-scale computational grids for heterogeneous matrix and discrete fractures, which results in linear system sizes out of the scope of the classical simulation approaches. To reduce the computational costs, yet provide accurate solutions, on this highly resolved fine-scale mesh, F-ADM imposes independent dynamic multilevel coarse grids for both matrix and lower-dimensional discrete fractures. The fully-implicit discrete system is then mapped into this adaptive dynamic multilevel resolution for all unknowns (i.e., pressure and phase saturation). The dynamic resolution aims for resolving sharp fronts for the transport unknowns, thus constant interpolators are used to map the saturation from coarse to fine grids both in matrix and fractures. However, due to the global nature of the pressure unknowns, local multilevel basis functions for both matrix and fractures with flexible matrix-fracture coupling treatment are introduced for the pressure. The assembly of the full sets of basis functions allows for mapping the solutions up and down between any resolutions. Due to its adaptive multilevel resolution, F-ADM develops an automatic integrated framework to homogenise or explicitly represent a fracture network at a coarser level by selection of the multilevel coarse nodes in each sub-domain. Various test cases, including multiphase flow in 2D and 3D media, are studied, where only a fraction of the fine-scale grids is employed to obtain accurate nonlinear multiphase solutions. F-ADM casts a promising approach for large-scale simulation of multiphase flow in fractured media.
AB - We present an algebraic dynamic multilevel method for multiphase flow in heterogeneous fractured porous media (F-ADM), where fractures are resolved at fine scale with an embedded discrete modelling approach. This fine-scale discrete system employs independent fine-scale computational grids for heterogeneous matrix and discrete fractures, which results in linear system sizes out of the scope of the classical simulation approaches. To reduce the computational costs, yet provide accurate solutions, on this highly resolved fine-scale mesh, F-ADM imposes independent dynamic multilevel coarse grids for both matrix and lower-dimensional discrete fractures. The fully-implicit discrete system is then mapped into this adaptive dynamic multilevel resolution for all unknowns (i.e., pressure and phase saturation). The dynamic resolution aims for resolving sharp fronts for the transport unknowns, thus constant interpolators are used to map the saturation from coarse to fine grids both in matrix and fractures. However, due to the global nature of the pressure unknowns, local multilevel basis functions for both matrix and fractures with flexible matrix-fracture coupling treatment are introduced for the pressure. The assembly of the full sets of basis functions allows for mapping the solutions up and down between any resolutions. Due to its adaptive multilevel resolution, F-ADM develops an automatic integrated framework to homogenise or explicitly represent a fracture network at a coarser level by selection of the multilevel coarse nodes in each sub-domain. Various test cases, including multiphase flow in 2D and 3D media, are studied, where only a fraction of the fine-scale grids is employed to obtain accurate nonlinear multiphase solutions. F-ADM casts a promising approach for large-scale simulation of multiphase flow in fractured media.
KW - Adaptive mesh refinement
KW - Algebraic multiscale method
KW - Flow in porous media
KW - Fractured porous media
KW - Multilevel multiscale method
KW - Multiscale basis functions
KW - Scalable physics-based nonlinear simulation
UR - http://www.scopus.com/inward/record.url?scp=85049753074&partnerID=8YFLogxK
U2 - 10.1016/j.jcp.2018.06.075
DO - 10.1016/j.jcp.2018.06.075
M3 - Article
AN - SCOPUS:85049753074
VL - 373
SP - 324
EP - 345
JO - Journal of Computational Physics
JF - Journal of Computational Physics
SN - 0021-9991
ER -