Alleviation of Propeller-slipstream-induced unsteady pylon loading by a flow-permeable leading edge

Research output: Contribution to journalArticleScientificpeer-review

25 Citations (Scopus)
129 Downloads (Pure)

Abstract

The impingement of a propeller slipstream on a downstream surface causes unsteady loading, which may lead to vibrations responsible for structure-borne noise. A low-speed wind-tunnel experiment was performed to quantify the potential of a flow-permeable leading edge to alleviate the slipstream-induced unsteady loading. For this purpose, a tractor propeller was installed at the tip of a pylon featuring a replaceable leading-edge insert in the region of slipstream impingement. Tests were carried out with four flow-permeable inserts, with different hole diameters and cavity depths, and a baseline solid insert. Particle-image-velocimetry measurements showed that the flow through the permeable surface caused an increase in boundary-layer thickness on the pylon's suction side. This led to a local drag increase and reduced lift, especially for angles of attack above 6 deg. Furthermore, it amplified the viscous interaction with the propeller tip-vortex cores, reducing the velocity fluctuations near the pylon surface by up to 35%. Consequently, lower tonal noise emissions from the pylon were measured in the far field. This suggests that the desired reduction in surface pressure fluctuations was achieved by application of the flow-permeable leading edge.

Original languageEnglish
Pages (from-to)1214-1230
Number of pages17
JournalJournal of Aircraft
Volume56
Issue number3
DOIs
Publication statusPublished - 2019

Bibliographical note

Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Fingerprint

Dive into the research topics of 'Alleviation of Propeller-slipstream-induced unsteady pylon loading by a flow-permeable leading edge'. Together they form a unique fingerprint.

Cite this