Abstract
This article presents an application-specific integrated circuit (ASIC) for battery-powered ultrasound (US) devices. The ASIC implements a novel energy-efficient high-voltage (HV) pulser that generates HV transmit (TX) pulses directly from a low-voltage (LV) battery supply. By means of a single off-chip inductor, energy is supplied to a US transducer in a resonant fashion, directly generating half-period sinusoidal HV pulses on the transducer, while consuming substantially less energy than a conventional class-D pulser. By recycling residual reactive energy from the transducer back to the input, the energy consumption is further reduced by more than 50%. The autocalibration techniques are leveraged to deal with tolerances of the inductor, transducer, and battery supply and thus maximize the energy efficiency. A prototype chip was fabricated in TSMC 0.18-μm HV BCD technology and used to drive external 120-pF capacitive micromachined US transducers (CMUTs) with a center frequency of approximately 2.5 MHz. Electrical measurements show that the prototype can generate pulses with a peak amplitude between 10 and 30 V accurate to within ±1 V. Acoustic measurements demonstrate successful ultrasonic pulse transmission and pulse-echo measurements. The prototype reaches a peak efficiency of 0.23 fCV 2 , which is the highest reported to date for HV pulsers targeting US imaging.
Original language | English |
---|---|
Pages (from-to) | 2048-2059 |
Number of pages | 12 |
Journal | IEEE Journal of Solid-State Circuits |
Volume | 60 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2024 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository as part of the Taverne amendment. More information about this copyright law amendment can be found at https://www.openaccess.nl. Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Keywords
- Battery-powered operation
- energy recycling
- high-voltage (HV) pulser
- resonant pulser
- ultrasound (US) application-specific integrated circuit (ASIC)
- US imaging
- wearable US