An artificial neural network based approach to investigate travellers’ decision rules

Sander van Cranenburgh, Ahmad Alwosheel

Research output: Contribution to journalArticleScientificpeer-review

49 Citations (Scopus)
40 Downloads (Pure)


This study develops a novel Artificial Neural Network (ANN) based approach to investigate decision rule heterogeneity amongst travellers. This complements earlier work on decision rule heterogeneity based on Latent Class discrete choice models. We train our ANN to recognise the choice patterns of four distinct decision rules: Random Utility Maximisation, Random Regret Minimisation, Lexicographic, and Random. Next, we apply our trained ANN to classify the respondents from a recent Value-of-Time Stated Choice experiment in terms of their most likely employed decision rule. We cross-validate our findings by comparing our results with those from: (1) single class discrete choice models estimated on subsets of the data, and (2) latent class discrete choice models. The cross-validations provide strong support for the notion that ANNs can be used to identify underlying decision rules in choice data. As such, we believe that ANNs provide a valuable addition to the toolbox of analysts who wish to investigate decision rule heterogeneity. The substantive contribution of this study is that we provide strong empirical evidence for the presence of decision rule heterogeneity amongst travellers.
Original languageEnglish
Pages (from-to)152-166
Number of pages15
JournalTransportation Research. Part C: Emerging Technologies
Publication statusPublished - 2019

Bibliographical note

Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.


  • Decision rule
  • Artificial neural network
  • Latent class
  • Discrete choice


Dive into the research topics of 'An artificial neural network based approach to investigate travellers’ decision rules'. Together they form a unique fingerprint.

Cite this