Abstract
This work investigates numerical method and equivalent continuum approach (ECA) of fluid flow in fractured porous media. The commonly used discrete fracture model (DFM) without upscaling needs full discretization of all fractures. It enjoys the merit of capturing each fracture accurately but will get in trouble with mesh partition and low computational efficiency, especially when a complex geometry is involved. In this study, we develop an efficient implicit scheme with adaptive iteration, in which an improved ECA is devised and then integrated in this scheme. Numerical studies show that the proposed numerical scheme improves the convergence condition and computational efficiency. Then, a test is conducted to demonstrate the feasibility of using superposition principle of permeability tensor in upscaling. Based on these, different strategies are applied to simulate fluid flow in fracture networks with a complex geometry. It is demonstrated that the proposed ECA is able to reproduce the results computed by DFM. The accuracy depends on resolution of background grids. The presented method enjoys a low computational cost and desirable convergence performance compared with the standard DFM in which equivalent continuum is not considered.
Original language | English |
---|---|
Article number | 104186 |
Pages (from-to) | 1-15 |
Number of pages | 15 |
Journal | Advances in Water Resources |
Volume | 163 |
DOIs | |
Publication status | Published - 2022 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- Fractured porous media
- Two-phase flow
- Upscaling
- Equivalent permeability tensor
- Implicit scheme