Abstract
In this article, an efficient multi-objective optimization strategy for the Halbach array permanent magnet synchronous machine (PMSM) is developed by taking into consideration the nonlinear B-H behavior of soft magnetic materials. Based on the harmonic modeling (HM) technology, the electromagnetic performances (EPs) of the Halbach array PMSM can be computed. To specifically model the local magnetic saturation, the stator teeth are separated into several annular layers, and each tooth is further divided into several regions along the tangential direction. Then, the parameters of the Halbach array PMSM are optimized utilizing combined nonlinear semi-analytical model (SAM) and non-dominated sorting genetic algorithm II (NSGA-II). To validate the effectiveness and accuracy of the developed optimization scheme, a Halbach array prototype is then manufactured in accordance with the optimization results. The multi-objective rapid optimization strategy developed in this article, which includes but is not limited to Halbach array permanent magnet (PM) machines, serves as a reference for the design and optimization of various PM machines.
Original language | English |
---|---|
Pages (from-to) | 111-128 |
Number of pages | 18 |
Journal | International Journal of Applied Electromagnetics and Mechanics |
Volume | 73 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2023 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- Halbach array
- magnetic saturation
- non-dominated sorting genetic algorithm II (NSGA-II)
- permanent magnet synchronous machine (PMSM)