Analysis and Design of VCO-Based Phase-Domain ΣΔ Modulators

Research output: Contribution to journalArticleScientificpeer-review

11 Citations (Scopus)
557 Downloads (Pure)

Abstract

VCO-based phase-domain ΣΔ modulators employ the combination of a voltage-controlled-oscillator (VCO) and an up/down counter to replace the analog loop filter used in conventional ΣΔ modulators. Thanks to this highly digital architecture, they can be quite compact, and are expected to shrink even further with CMOS scaling. This paper describes the analysis and design of such converters. Trade-offs between design parameters and the impact of non-idealities, such as finite counter length and VCO non-linearity, are assessed through both theoretical analysis and behavioral simulations. The proposed design methodology is applied to the design of a phase-to-digital converter in a 40-nm CMOS process, which is used to digitize the output of a thermal-diffusivity temperature sensor, achieving ± 0.2° (3σ) phase inaccuracy from -40 to 125 °C and a sensor-limited resolution of 57 m° (RMS) within a 500-Hz bandwidth. Measurements on the prototype agree quite well with theoretical predictions, thus demonstrating the validity of the proposed design methodology.

Original languageEnglish
Article number7817814
Pages (from-to)1075-1084
Number of pages10
JournalIEEE Transactions on Circuits and Systems Part 1: Regular Papers
Volume64
Issue number5
DOIs
Publication statusPublished - 2017

Bibliographical note

Accepted Author Manuscript

Keywords

  • Phase-to-digital converter
  • quantization noise
  • time-to-digital converter
  • VCO-based sigma-delta modulator

Fingerprint

Dive into the research topics of 'Analysis and Design of VCO-Based Phase-Domain ΣΔ Modulators'. Together they form a unique fingerprint.

Cite this