TY - JOUR
T1 - Analysis of Nonisothermal Rarefied Gas Flow in Diverging Microchannels for Low-Pressure Microresistojets
AU - Cordeiro Guerrieri, Daduí
AU - Cervone, Angelo
AU - Gill, Eberhard
PY - 2016
Y1 - 2016
N2 - Heat transfer and fluid flow through different microchannel geometries in the transitional regime (rarefied flow) are analysed by means of Direct Simulation Monte Carlo simulations. Four types of three-dimensional microchannels, intended to be used as expansion slots in micro-resistojet concepts, are investigated using Nitrogen as working fluid. The main purpose is to understand the impact of the channel geometry on the exit velocity and the transmission coefficient, parameters which are well known to affect directly the thruster performance. Although this analysis can be applied in principle to several possible microfluidics scenarios, particular focus is given to its application in the field of space propulsion for micro-, nano- and pico-satellites, for which the requirements ask for low thrust levels from some μN to a few mN and moderate specific impulse, as well as a low power consumption in the order of a few W. Analysis shows that the thrust produced by one single microchannel can be increased by about 480% with a careful selection of the channel geometry, decreasing at the same time the specific impulse by just 5%, with a power consumption decrease of more than 66.7%.
AB - Heat transfer and fluid flow through different microchannel geometries in the transitional regime (rarefied flow) are analysed by means of Direct Simulation Monte Carlo simulations. Four types of three-dimensional microchannels, intended to be used as expansion slots in micro-resistojet concepts, are investigated using Nitrogen as working fluid. The main purpose is to understand the impact of the channel geometry on the exit velocity and the transmission coefficient, parameters which are well known to affect directly the thruster performance. Although this analysis can be applied in principle to several possible microfluidics scenarios, particular focus is given to its application in the field of space propulsion for micro-, nano- and pico-satellites, for which the requirements ask for low thrust levels from some μN to a few mN and moderate specific impulse, as well as a low power consumption in the order of a few W. Analysis shows that the thrust produced by one single microchannel can be increased by about 480% with a careful selection of the channel geometry, decreasing at the same time the specific impulse by just 5%, with a power consumption decrease of more than 66.7%.
U2 - 10.1115/1.4033955
DO - 10.1115/1.4033955
M3 - Article
VL - 138
JO - Journal of Heat Transfer
JF - Journal of Heat Transfer
SN - 0022-1481
IS - 11
M1 - 112403
ER -