Analysis of Spherical Shell Solutions for the Radially Symmetric Aggregation Equation

D. Balagué Guardia, A.B.T. Barbaro, Jose Antonio Carrillo, Robert Volkin

Research output: Contribution to journalArticleScientificpeer-review

14 Downloads (Pure)

Abstract

We study distributional solutions to the radially symmetric aggregation equation for power-law potentials. We show that distributions containing spherical shells form part of a basin of attraction in the space of solutions in the sense of “shifting stability." For spherical shell initial data, we prove the exponential convergence of solutions to equilibrium and construct some explicit solutions for specific ranges of attractive power. We further explore results concerning the evolution and equilibria for initial data formed from convex combinations of spherical shells.
Original languageEnglish
Pages (from-to)2628–2657
Number of pages30
JournalSIAM Journal on Applied Dynamical Systems
Volume19
Issue number4
DOIs
Publication statusPublished - 2020

Keywords

  • Aggregation equation
  • Gradient flow
  • Spherical shells

Fingerprint

Dive into the research topics of 'Analysis of Spherical Shell Solutions for the Radially Symmetric Aggregation Equation'. Together they form a unique fingerprint.

Cite this