Analysis of the impact of traffic density on training of reinforcement learning based conflict resolution methods for drones

D. J. Groot*, J. Ellerbroek, J. M. Hoekstra

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

42 Downloads (Pure)

Abstract

Conventional Air Traffic Control is still predominantly being done by human Air Traffic Controllers, however, as the traffic density increases, the workload of the controllers increases as well. Especially for the area of unmanned aviation, driven by the rise in drones, having human controllers might become unfeasible. One of the methods that is currently being investigated for replacing the conflict resolution task of Air Traffic Control is Reinforcement Learning. As violation of the required separation margins, also called an intrusion, is an event of relatively low frequency, using Reinforcement Learning for this task comes with difficulties that can potentially be attributed to data imbalance. This paper artificially increased the traffic density during the training phase of the Reinforcement Learning method to investigate what the importance is of a balanced data set on the performance of the Reinforcement Learning method. It was found that as the traffic density increased, the Reinforcement Learning methods started to outperform the analytical methods. Beyond this it was found that methods trained at higher traffic densities, but tested at lower traffic densities, outperformed the methods trained at that specific density. This indicates that it might be better to always ensure that the training scenarios are more complex than anticipated during the execution phase, even if that results in unrealistic scenarios.

Original languageEnglish
Article number108066
Number of pages11
JournalEngineering Applications of Artificial Intelligence
Volume133
DOIs
Publication statusPublished - 2024

Keywords

  • BlueSky simulator
  • Conflict resolution
  • Deep reinforcement learning
  • High-traffic density
  • Simulation
  • Soft actor critic
  • Unmanned traffic management

Fingerprint

Dive into the research topics of 'Analysis of the impact of traffic density on training of reinforcement learning based conflict resolution methods for drones'. Together they form a unique fingerprint.

Cite this