TY - JOUR
T1 - Anisotropic Triebel-Lizorkin spaces and wavelet coefficient decay over one-parameter dilation groups, II
AU - Koppensteiner, Sarah
AU - van Velthoven, Jordy Timo
AU - Voigtlaender, Felix
PY - 2023
Y1 - 2023
N2 - Continuing previous work, this paper provides maximal characterizations of anisotropic Triebel-Lizorkin spaces F˙p,qα for the endpoint case of p= ∞ and the full scale of parameters α∈ R and q∈ (0 , ∞]. In particular, a Peetre-type characterization of the anisotropic Besov space B˙∞,∞α=F˙∞,∞α is obtained. As a consequence, it is shown that there exist dual molecular frames and Riesz sequences in F˙∞,qα.
AB - Continuing previous work, this paper provides maximal characterizations of anisotropic Triebel-Lizorkin spaces F˙p,qα for the endpoint case of p= ∞ and the full scale of parameters α∈ R and q∈ (0 , ∞]. In particular, a Peetre-type characterization of the anisotropic Besov space B˙∞,∞α=F˙∞,∞α is obtained. As a consequence, it is shown that there exist dual molecular frames and Riesz sequences in F˙∞,qα.
KW - Anisotropic Triebel-Lizorkin spaces
KW - Anisotropic wavelet systems
KW - Coorbit molecules
KW - Frames
KW - Maximal functions
KW - One-parameter groups
KW - Riesz sequences
UR - http://www.scopus.com/inward/record.url?scp=85147978777&partnerID=8YFLogxK
U2 - 10.1007/s00605-023-01824-3
DO - 10.1007/s00605-023-01824-3
M3 - Article
AN - SCOPUS:85147978777
VL - 201
SP - 431
EP - 464
JO - Monatshefte für Mathematik
JF - Monatshefte für Mathematik
SN - 0026-9255
IS - 2
ER -