TY - JOUR
T1 - Anisotropic Triebel–Lizorkin spaces and wavelet coefficient decay over one-parameter dilation groups, I
AU - Koppensteiner, Sarah
AU - van Velthoven, Jordy Timo
AU - Voigtlaender, Felix
PY - 2023
Y1 - 2023
N2 - This paper provides maximal function characterizations of anisotropic Triebel–Lizorkin spaces associated to general expansive matrices for the full range of parameters p∈ (0 , ∞) , q∈ (0 , ∞] and α∈ R. The equivalent norm is defined in terms of the decay of wavelet coefficients, quantified by a Peetre-type space over a one-parameter dilation group. As an application, the existence of dual molecular frames and Riesz sequences is obtained; the wavelet systems are generated by translations and anisotropic dilations of a single function, where neither the translation nor dilation parameters are required to belong to a discrete subgroup. Explicit criteria for molecules are given in terms of mild decay, moment, and smoothness conditions.
AB - This paper provides maximal function characterizations of anisotropic Triebel–Lizorkin spaces associated to general expansive matrices for the full range of parameters p∈ (0 , ∞) , q∈ (0 , ∞] and α∈ R. The equivalent norm is defined in terms of the decay of wavelet coefficients, quantified by a Peetre-type space over a one-parameter dilation group. As an application, the existence of dual molecular frames and Riesz sequences is obtained; the wavelet systems are generated by translations and anisotropic dilations of a single function, where neither the translation nor dilation parameters are required to belong to a discrete subgroup. Explicit criteria for molecules are given in terms of mild decay, moment, and smoothness conditions.
KW - Anisotropic Triebel–Lizorkin spaces
KW - Anisotropic wavelet systems
KW - Coorbit molecules
KW - Frames
KW - Maximal functions
KW - One-parameter groups
KW - Riesz sequences
UR - http://www.scopus.com/inward/record.url?scp=85148626817&partnerID=8YFLogxK
U2 - 10.1007/s00605-023-01827-0
DO - 10.1007/s00605-023-01827-0
M3 - Article
AN - SCOPUS:85148626817
VL - 201
SP - 375
EP - 429
JO - Monatshefte für Mathematik
JF - Monatshefte für Mathematik
SN - 0026-9255
IS - 2
ER -