ANN-Based Fatigue Strength of Concrete under Compression

Miguel Abambres, Eva Lantsoght

Research output: Contribution to journalArticleScientificpeer-review

27 Downloads (Pure)

Abstract

When concrete is subjected to cycles of compression, its strength is lower than the statically determined concrete compressive strength. This reduction is typically expressed as a function of the number of cycles. In this work, we study the reduced capacity as a function of a given number of cycles by means of artificial neural networks. We used an input database with 203 datapoints gathered from the literature. To find the optimal neural network, 14 features of neural networks were studied and varied, resulting in the optimal neural net. This proposed model resulted in a maximum relative error of 5.1% and a mean relative error of 1.2% for the 203 datapoints. The proposed model resulted in a better prediction (mean tested to predicted value = 1.00 with a coefficient of variation 1.7%) as compared to the existing code expressions. The model we developed can thus be used for the design and the assessment of concrete structures and provides a more accurate assessment and design than the existing methods.
Original languageEnglish
Article number3787
Pages (from-to)1-21
Number of pages21
JournalMaterials
Volume12
Issue number22
DOIs
Publication statusPublished - 2019

Keywords

  • Artificial neural networks
  • Codes
  • Compression
  • Concrete
  • Cyclic behavior
  • Databases
  • Fatigue

Fingerprint Dive into the research topics of 'ANN-Based Fatigue Strength of Concrete under Compression'. Together they form a unique fingerprint.

Cite this