Antimicrobial properties dependence on the composition and architecture of copper-alumina coatings prepared by plasma electrolytic oxidation (PEO)

Janaina S. Santos, Victor Márquez, Josephus G. Buijnsters, Supareak Praserthdam, Piyasan Praserthdam*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

Abstract

This study presents environmentally friendly and low-cost synthetic routes to produce antimicrobial coatings over 5052 Al alloy based on plasma electrolytic oxidation (PEO) technology. Two methodologies were explored: the decoration with copper and anodic doping with copper ions. The porous oxide layers produced in silicate media presented two porous layers consisting of γ-Al2O3 crystalline phase and amorphous phases of aluminosilicate, silica, and Al(OH)3. Small amounts of copper (<0.3 at.%) were detected in the PEO films. In the Cu-decorated film, copper clusters composed of Cu0 and Cu2+ species were observed visually as small black dots on the surface. In the Cu-doped film, the Cu2+ and Cu+ species were homogeneously distributed on the surface. The copper content affected the corrosion performance in aggressive corrosive media. The PEO coatings showed a remarkable antimicrobial activity after 24 h in standard tests. The antimicrobial effectiveness of the Cu-decorated sample was higher against S. aureus, while the Cu-doped sample was more effective against E. coli. The results demonstrated that differences in the PEO coating architecture can affect the material composition and, consequently, the bacterial inactivation mechanism. These findings can serve as a guide to tailor aluminum alloys for specific antimicrobial surfaces.

Original languageEnglish
Article number155072
Number of pages14
JournalApplied Surface Science
Volume607
DOIs
Publication statusPublished - 2023

Bibliographical note

Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Keywords

  • Alumina
  • Antimicrobial surfaces
  • Copper
  • Corrosion resistance
  • PEO coatings
  • Porous films

Fingerprint

Dive into the research topics of 'Antimicrobial properties dependence on the composition and architecture of copper-alumina coatings prepared by plasma electrolytic oxidation (PEO)'. Together they form a unique fingerprint.

Cite this