TY - JOUR
T1 - Approximating piecewise nonlinearities in dynamic systems with sigmoid functions
T2 - advantages and limitations
AU - Martinelli, Cristiano
AU - Coraddu, Andrea
AU - Cammarano, Andrea
PY - 2023
Y1 - 2023
N2 - In the industry field, the increasingly stringent requirements of lightweight structures are exposing the ultimately nonlinear nature of mechanical systems. This is extremely true for systems with moving parts and loose fixtures which show piecewise stiffness behaviours. Nevertheless, the numerical solution of systems with ideal piecewise mathematical characteristics is associated with time-consuming procedures and a high computational burden. Smoothing functions can conveniently simplify the mathematical form of such systems, but little research has been carried out to evaluate their effect on the mechanical response of multi-degree-of-freedom systems. To investigate this problem, a slightly damped mechanical two-degree-of-freedom system with soft piecewise constraints is studied via numerical continuation and numerical integration procedures. Sigmoid functions are adopted to approximate the constraints, and the effect of such approximation is explored by comparing the results of the approximate system with the ones of the ideal piecewise counter-part. The numerical results show that the sigmoid functions can correctly catch the very complex dynamics of the proposed system when both the above-mentioned techniques are adopted. Moreover, a reduction in the computational burden, as well as an increase in numerical robustness, is observed in the approximate case.
AB - In the industry field, the increasingly stringent requirements of lightweight structures are exposing the ultimately nonlinear nature of mechanical systems. This is extremely true for systems with moving parts and loose fixtures which show piecewise stiffness behaviours. Nevertheless, the numerical solution of systems with ideal piecewise mathematical characteristics is associated with time-consuming procedures and a high computational burden. Smoothing functions can conveniently simplify the mathematical form of such systems, but little research has been carried out to evaluate their effect on the mechanical response of multi-degree-of-freedom systems. To investigate this problem, a slightly damped mechanical two-degree-of-freedom system with soft piecewise constraints is studied via numerical continuation and numerical integration procedures. Sigmoid functions are adopted to approximate the constraints, and the effect of such approximation is explored by comparing the results of the approximate system with the ones of the ideal piecewise counter-part. The numerical results show that the sigmoid functions can correctly catch the very complex dynamics of the proposed system when both the above-mentioned techniques are adopted. Moreover, a reduction in the computational burden, as well as an increase in numerical robustness, is observed in the approximate case.
KW - Basins of attraction
KW - Non-smooth systems
KW - Nonlinear dynamics
KW - Numerical continuation
KW - Period doubling isolated solutions
KW - Piecewise stiffness
KW - Sigmoid functions
UR - http://www.scopus.com/inward/record.url?scp=85147996038&partnerID=8YFLogxK
U2 - 10.1007/s11071-023-08293-1
DO - 10.1007/s11071-023-08293-1
M3 - Article
AN - SCOPUS:85147996038
VL - 111
SP - 8545
EP - 8569
JO - Nonlinear Dynamics: an international journal of nonlinear dynamics and chaos in engineering systems
JF - Nonlinear Dynamics: an international journal of nonlinear dynamics and chaos in engineering systems
SN - 0924-090X
IS - 9
ER -