TY - JOUR
T1 - Arabidopsis thaliana alpha1,2-glucosyltransferase (ALG10) is required for efficient N-glycosylation and leaf growth
AU - Farid, Akhlaq
AU - Pabst, Martin
AU - Schoberer, Jennifer
AU - Altmann, Friedrich
AU - Glössl, Josef
AU - Strasser, Richard
PY - 2011
Y1 - 2011
N2 - Assembly of the dolichol-linked oligosaccharide precursor (Glc 3Man9GlcNAc2) is highly conserved among eukaryotes. In contrast to yeast and mammals, little is known about the biosynthesis of dolichol-linked oligosaccharides and the transfer to asparagine residues of nascent polypeptides in plants. To understand the biological function of these processes in plants we characterized the Arabidopsis thaliana homolog of yeast ALG10, the α1,2-glucosyltransferase that transfers the terminal glucose residue to the lipid-linked precursor. Expression of an Arabidopsis ALG10-GFP fusion protein in Nicotiana benthamiana leaf epidermal cells revealed a reticular distribution pattern resembling endoplasmic reticulum (ER) localization. Analysis of lipid-linked oligosaccharides showed that Arabidopsis ALG10 can complement the yeast Δalg10 mutant strain. A homozygous Arabidopsis T-DNA insertion mutant (alg10-1) accumulated mainly lipid-linked Glc2Man9GlcNAc2 and displayed a severe protein underglycosylation defect. Phenotypic analysis of alg10-1 showed that mutant plants have altered leaf size when grown in soil. Moreover, the inactivation of ALG10 in Arabidopsis resulted in the activation of the unfolded protein response, increased salt sensitivity and suppression of the phenotype of α-glucosidase I-deficient plants. In summary, these data show that Arabidopsis ALG10 is an ER-resident α1,2-glucosyltransferase that is required for lipid-linked oligosaccharide biosynthesis and subsequently for normal leaf development and abiotic stress response.
AB - Assembly of the dolichol-linked oligosaccharide precursor (Glc 3Man9GlcNAc2) is highly conserved among eukaryotes. In contrast to yeast and mammals, little is known about the biosynthesis of dolichol-linked oligosaccharides and the transfer to asparagine residues of nascent polypeptides in plants. To understand the biological function of these processes in plants we characterized the Arabidopsis thaliana homolog of yeast ALG10, the α1,2-glucosyltransferase that transfers the terminal glucose residue to the lipid-linked precursor. Expression of an Arabidopsis ALG10-GFP fusion protein in Nicotiana benthamiana leaf epidermal cells revealed a reticular distribution pattern resembling endoplasmic reticulum (ER) localization. Analysis of lipid-linked oligosaccharides showed that Arabidopsis ALG10 can complement the yeast Δalg10 mutant strain. A homozygous Arabidopsis T-DNA insertion mutant (alg10-1) accumulated mainly lipid-linked Glc2Man9GlcNAc2 and displayed a severe protein underglycosylation defect. Phenotypic analysis of alg10-1 showed that mutant plants have altered leaf size when grown in soil. Moreover, the inactivation of ALG10 in Arabidopsis resulted in the activation of the unfolded protein response, increased salt sensitivity and suppression of the phenotype of α-glucosidase I-deficient plants. In summary, these data show that Arabidopsis ALG10 is an ER-resident α1,2-glucosyltransferase that is required for lipid-linked oligosaccharide biosynthesis and subsequently for normal leaf development and abiotic stress response.
KW - abiotic stress
KW - endoplasmic reticulum
KW - glycosyltransferase
KW - lipid-linked oligosaccharides
KW - posttranslational modification
KW - protein glycosylation
UR - http://www.scopus.com/inward/record.url?scp=80054083632&partnerID=8YFLogxK
U2 - 10.1111/j.1365-313X.2011.04688.x
DO - 10.1111/j.1365-313X.2011.04688.x
M3 - Article
C2 - 21707802
AN - SCOPUS:80054083632
VL - 68
SP - 314
EP - 325
JO - The Plant Journal
JF - The Plant Journal
SN - 0960-7412
IS - 2
ER -