TY - JOUR
T1 - Assessing and Improving Operational Strategies for the Benefit of Passengers in Rail-Bound Urban Transport Systems
AU - Durand, Anne
AU - Van Oort, Niels
AU - Hoogendoorn, Serge
PY - 2018/1/1
Y1 - 2018/1/1
N2 - Unplanned disruptions in transit can have consequent impacts on passengers. The more inconvenienced passengers are, the more likely operators will be negatively impacted. Yet so far, operators and researchers have addressed the rescheduling problem during disruptions mainly with a supply-side focus – timetable, crews, and vehicles – and not with a passenger perspective. Urban rail transit particularly lacks insights in terms of passenger-focused rescheduling. Being able to assess the inconvenience experienced by passengers during disruptions compared with what they normally experience, and being able to compare how different rescheduling strategies affect them are therefore two major challenges. The framework developed in this study precisely aims at tackling these challenges. A case study of the Rotterdam Metro is used to test the framework developed in this paper. Alternative strategies are developed focusing on the incident phase (from the beginning of the incident until its cause is resolved). The application of the framework reveals that a regularity-focused rescheduling strategy would be beneficial for high-frequency service users. Realistically, yearly savings could amount to around €900,000 in terms of societal passenger costs for the operator in the Rotterdam area alone. However, the omnipresence of the punctuality paradigm, through which most operators plan and analyze operations, makes the implementation of passenger-focused strategies a challenging task for traffic controllers. The results of the study are valuable for transit operators worldwide, and the framework could provide decision makers with insights on the performance of different strategies, bringing to light trade-offs between the supply and passenger sides during disruptions.
AB - Unplanned disruptions in transit can have consequent impacts on passengers. The more inconvenienced passengers are, the more likely operators will be negatively impacted. Yet so far, operators and researchers have addressed the rescheduling problem during disruptions mainly with a supply-side focus – timetable, crews, and vehicles – and not with a passenger perspective. Urban rail transit particularly lacks insights in terms of passenger-focused rescheduling. Being able to assess the inconvenience experienced by passengers during disruptions compared with what they normally experience, and being able to compare how different rescheduling strategies affect them are therefore two major challenges. The framework developed in this study precisely aims at tackling these challenges. A case study of the Rotterdam Metro is used to test the framework developed in this paper. Alternative strategies are developed focusing on the incident phase (from the beginning of the incident until its cause is resolved). The application of the framework reveals that a regularity-focused rescheduling strategy would be beneficial for high-frequency service users. Realistically, yearly savings could amount to around €900,000 in terms of societal passenger costs for the operator in the Rotterdam area alone. However, the omnipresence of the punctuality paradigm, through which most operators plan and analyze operations, makes the implementation of passenger-focused strategies a challenging task for traffic controllers. The results of the study are valuable for transit operators worldwide, and the framework could provide decision makers with insights on the performance of different strategies, bringing to light trade-offs between the supply and passenger sides during disruptions.
UR - http://www.scopus.com/inward/record.url?scp=85053432374&partnerID=8YFLogxK
UR - http://resolver.tudelft.nl/uuid:727c742e-c472-41e9-9e98-6cbb284346c5
U2 - 10.1177/0361198118786671
DO - 10.1177/0361198118786671
M3 - Article
AN - SCOPUS:85053432374
SN - 0361-1981
VL - 2675
JO - Transportation Research Record
JF - Transportation Research Record
IS - 8
ER -