Assessing the climate impact of formation flights

C. Frömming, V. Grewe, S. Brinkop, Amund S. Haslerud, S. Rosanka, Sigrun Matthes, J. van Manen

Research output: Contribution to conferenceAbstractScientific

9 Downloads (Pure)


Emissions of aviation include CO2, H2O, NOx and particles. While CO2 has a long atmospheric residence time and is uniformly distributed in the atmosphere, non-CO2 gases, particles and their products have short atmospheric residence times and are heterogeneously distributed. Their climate effects depend on chemical and meteorological background conditions during emission, which vary with geographic location, altitude, time, local insolation, actual weather, etc. This spatial and temporal variability can be utilized for aviation climate impact mitigation by identifying aircraft trajectories which avoid climate-sensitive regions. To determine the climate change contribution of individual emissions as function of 3-dimensional position, time and weather situation, contributions of local emissions to changes in O3, CH4, H2O and contrail-cirrus were computed by means of the ECHAM5/MESSy Atmospheric Chemistry model and four-dimensional climate change functions (CCFs) were derived thereof. Typical weather situations in the North Atlantic region were considered for winter and summer. For all non-CO2 species included in the study, we found distinct weather related differences with respect to their climate impact. Depending on the species, we found enhanced significance of the position of emission release in relation to high pressure systems, in relation to the jet stream, in relation to polar night and in relation to the tropopause altitude. The dominating parameters were found to be contrail-cirrus and total NOx. The results of this study represent a comprehensive basis for weather dependent flight trajectory optimization studies. Furthermore it constitutes the groundwork for the development of more generally applicable algorithmic CCFs.
Original languageEnglish
Publication statusPublished - 2020
Event3rd ECATS conference: Making aviation environmentally sustainable - Virtual/online event due to COVID-19
Duration: 13 Oct 202015 Oct 2020
Conference number: 3


Conference3rd ECATS conference
Abbreviated titleECATS 2020
Internet address


  • non-CO2 emissions
  • weather dependency
  • climate optimal trajectories


Dive into the research topics of 'Assessing the climate impact of formation flights'. Together they form a unique fingerprint.

Cite this