Assessing the grid impact of Electric Vehicles, Heat Pumps & PV generation in Dutch LV distribution grids

Nikolaos Damianakis*, Gautham Ram Chandra Mouli, Pavol Bauer, Yunhe Yu

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

3 Citations (Scopus)
36 Downloads (Pure)

Abstract

Low Carbon Technologies (LCTs), such as Photovoltaics (PVs), Electric Vehicles (EVs), and Heat Pumps (HPs), are expected to cause a huge electric load in future distribution grids. This paper investigates the grid impact in terms of over-loading and nodal voltage deviations in different distribution grids due to increasing LCT penetrations. The major objectives are the identification of the most severe LCT, grid impact issue, seasonal effect, and vulnerable distributional area, considering the physical models of the LCTs. It is concluded that Winter is the most hazardous for the future grid impact, characterized by nearly 3 times higher over-loading and 2.5 times higher voltage deviations during high HP penetrations, while suburban areas are the most vulnerable. Moreover, while HPs seem to have, in general, a greater impact compared to EVs, EVs cause more prolonged violations. While this work follows a bottom-up approach, using detailed physical models, aggregated national data has also been acquired, which is often used by top-down approaches. Different grid impact issues have been compared for the two approaches in terms of magnitude and duration. While bottom-up approaches generate more pessimistic results regarding the magnitude of the violations, results about the duration of the violations can be contradictory.

Original languageEnglish
Article number121878
JournalApplied Energy
Volume352
DOIs
Publication statusPublished - 2023

Keywords

  • Distribution grids
  • EVs
  • Grid impact
  • Heat pumps
  • LCT
  • PVs

Fingerprint

Dive into the research topics of 'Assessing the grid impact of Electric Vehicles, Heat Pumps & PV generation in Dutch LV distribution grids'. Together they form a unique fingerprint.

Cite this