Assimilation of Active and Passive Microwave Observations for Improved Estimates of Soil Moisture and Crop Growth

Pang Wei Liu, Tara Bongiovanni, Alejandro Monsivais-Huertero, Jasmeet Judge, Susan Steele-Dunne, Rajat Bindlish, Thomas J. Jackson

Research output: Contribution to journalArticleScientificpeer-review

13 Citations (Scopus)

Abstract

An ensemble Kalman Filter-based data assimilation framework that links a crop growth model with active and passive (AP) microwave models was developed to improve estimates of soil moisture (SM) and vegetation biomass over a growing season of soybean. Complementarities in AP observations were incorporated to the framework, where the active observations were used to optimize surface roughness and update vegetation biomass, while passive observations were used to update SM. The framework was implemented in a rain-fed agricultural region of the southern La-Plata Basin during the 2011-2012 growing season, through a synthetic experiment and AP observations from the Aquarius mission. The synthetic experiment was conducted at a temporal resolution of 3 and 7 days to match the current AP missions. The assimilated estimates of SM in the root zone and dry biomass were improved compared to those from the cases without assimilation, during both 3-and 7-day assimilation scenarios. Particularly, the 3-day assimilation provided the best estimates of SM in the near surface and dry biomass with reductions in RMSEs of 41% and 42%, respectively. The absolute differences of assimilated LAI from Aquarius were <0.29 compared to the MODIS LAI indicating that the performance of assimilation was similar to the MODIS product at a regional scale. This study demonstrates the potential of assimilation using AP observations at high temporal resolution such as those from soil moisture active passive (SMAP) for improved estimates of SM and vegetation parameters.

Original languageEnglish
Article number7374661
Pages (from-to)1357-1369
Number of pages13
JournalIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Volume9
Issue number4
DOIs
Publication statusPublished - 1 Apr 2016

Keywords

  • Active microwave remote sensing
  • aquarius
  • data assimilation
  • passive microwave remote sensing
  • soil moisture (SM)
  • Soil moisture active passive (SMAP)

Fingerprint

Dive into the research topics of 'Assimilation of Active and Passive Microwave Observations for Improved Estimates of Soil Moisture and Crop Growth'. Together they form a unique fingerprint.

Cite this