Assorted Graphene-Based Nanofluid Flows Near a Reversed Stagnation Point over an Inclined Permeable Cylinder

S. N.A. Ghani, Hooman Yarmand, N. F.M. Noor*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

2 Citations (Scopus)

Abstract

Heat flux enhancement resulting from utilization of variant graphene-based nanoparticles; graphenes, graphene nanoplatelets, graphene oxides (GOs), carbon nanotubes (CNTs which include single and multiple walled CNTs) in a water-base fluid is focussed in the present study. A steady, laminar, incompressible, mixed convective and reversed stagnation point flow together with the consideration of transverse magnetic field over varying angles of an inclined permeable cylinder is analyzed for the heterogeneous nanofluids. The governing partial differential equations based on Tiwari-Das model are reformulated into nonlinear ordinary differential equations by applying similarity expressions. A shooting procedure is opted to reformulate the equations into boundary value problems which are solved by employing a numerical finite difference code utilizing three-stage Lobatto IIIa formula in MATLAB. The effects of constructive parameters toward the model on non-dimensional velocity and temperature disseminations, reduced skin friction coefficient and reduced Nusselt number are graphically reported and discussed in details. It is observed that GOs-water has the lowest heat flux performance under increasing values of wall permeability parameter, curvature parameter and nanoparticle volume fraction as compared to other nanofluids. On contrary, our results demonstrate that graphenes-water has the highest heat flux performance as compared to SWCNTs-water across many emerging parameters considered in this study.

Original languageEnglish
Pages (from-to)43-55
JournalProceedings of the National Academy of Sciences India Section A - Physical Sciences
Volume93 (2023)
Issue number1
DOIs
Publication statusPublished - 2022

Bibliographical note

Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Keywords

  • GNPs
  • GOs
  • Graphenes
  • Heterogeneous
  • Nanofluid
  • Tiwari-Das

Fingerprint

Dive into the research topics of 'Assorted Graphene-Based Nanofluid Flows Near a Reversed Stagnation Point over an Inclined Permeable Cylinder'. Together they form a unique fingerprint.

Cite this