Abstract
Ene-reductases allow regio- and stereoselective reduction of activated C=C double bonds at the expense of nicotinamide adenine dinucleotide cofactors [NAD(P)H]. Biological NAD(P)H can be replaced by synthetic mimics to facilitate enzyme screening and process optimization. The ene-reductase FOYE-1, originating from an acidophilic iron oxidizer, has been described as a promising candidate and is now being explored for applied biocatalysis. Biological and synthetic nicotinamide cofactors were evaluated to fuel FOYE-1 to produce valuable compounds. A maximum activity of (319.7±3.2) U mg−1 with NADPH or of (206.7±3.4) U mg−1 with 1-benzyl-1,4-dihydronicotinamide (BNAH) for the reduction of N-methylmaleimide was observed at 30 °C. Notably, BNAH was found to be a promising reductant but exhibits poor solubility in water. Different organic solvents were therefore assayed: FOYE-1 showed excellent performance in most systems with up to 20 vol% solvent and at temperatures up to 40 °C. Purification and application strategies were evaluated on a small scale to optimize the process. Finally, a 200 mL biotransformation of 750 mg (R)-carvone afforded 495 mg of (2R,5R)-dihydrocarvone (>95 % ee), demonstrating the simplicity of handling and application of FOYE-1.
Original language | English |
---|---|
Pages (from-to) | 1217-1225 |
Number of pages | 9 |
Journal | ChemBioChem |
Volume | 21 |
Issue number | 8 |
DOIs | |
Publication status | Published - 2020 |
Keywords
- biocatalysis
- biotransformations
- cofactor mimics
- Old Yellow Enzymes
- oxidoreductases
- solvent stability