Asynchronous Hyperbolic UWB Source-Localization and Self-Localization for Indoor Tracking and Navigation

David Chiasson, Yuan Lin, Manon Kok, Peter Shull

Research output: Contribution to journalArticleScientificpeer-review

2 Citations (Scopus)
45 Downloads (Pure)

Abstract

Hyperbolic localization measures the time difference of arrivals (TDOAs) of signals to determine the location of a wireless source or receiver. Traditional methods depend on precise clock synchronization between nodes so that time measurements from independent devices can be meaningfully compared. Imperfect synchronization is often the dominant source of error. We propose two new message based TDOA equations for hyperbolic localization which require no synchronization and meet or exceed state-of-the-art accuracy. Our approaches leverage anchor nodes that observe each other’s packet arrival times and a novel reformulation of the TDOA equation to reduce the effect of clock drift error. Closed-form equations are derived for computing TDOA in both self-localization and source-localization modes of operation along with bounds on maximum clock drift error. Three experiments are performed including a clock drift simulation, a non-line-of-sight (NLOS) simulation, and an indoor validation experiment on custom ultra wideband (UWB) hardware all of which involved eight anchor nodes and one localizing node in a 128m3 capture volume. Our source-localization approach achieved unprecedented accuracy with lower cost equipment and trivial setup. Our self-localization matched state-of-the art accuracy but with infinite scalability and high privacy. These results could enable economical and infinite density indoor navigation and dramatically reduce the economic cost and increase the accuracy of implementing industrial and commercial tracking applications.
Original languageEnglish
Pages (from-to)11655-11668
JournalIEEE Internet of Things Journal
Volume10
Issue number13
DOIs
Publication statusPublished - 2023

Bibliographical note

Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Keywords

  • Clocks
  • Distance measurement
  • Hyperbolic localization
  • Indoor Navigation
  • Internet of Things
  • Location awareness
  • Multilateration
  • Privacy
  • Scalability
  • Synchronization
  • TDOA
  • Ultra wideband (UWB)

Fingerprint

Dive into the research topics of 'Asynchronous Hyperbolic UWB Source-Localization and Self-Localization for Indoor Tracking and Navigation'. Together they form a unique fingerprint.

Cite this