TY - JOUR
T1 - Austenite Reverse Transformation in a Q&P Route of Mn and Ni Added Steels
AU - Arribas, Maribel
AU - Gutiérrez, Teresa
AU - Del Molino, Eider
AU - Arlazarov, Artem
AU - De Diego-Calderón, Irene
AU - Martin, David
AU - De Caro, Daniele
AU - Ayenampudi, Sudhindra
AU - Santofimia, Maria Jesus
PY - 2020
Y1 - 2020
N2 - In this work, four low carbon steels with different contents of Mn and Ni were heat treated by quenching and partitioning (Q&P) cycles where high partitioning temperatures, in the range of 550 °C–650 °C, were applied. In order to elucidate the effect of applying these high partitioning temperatures with respect to more common Q&P cycles, the materials were also heat treated considering a partitioning temperature of 400 °C. The microstructure evolution during the Q&P cycles was studied by means of dilatometry tests. The microstructural characterization of the treated materials revealed that austenite retention strongly depended on the alloy content and partitioning conditions. It was shown that the occurrence of austenite reverse transformation (ART) in the partitioning stage in some of the alloys and conditions was a very effective mechanism to increase the austenite content in the final microstructure. However, the enhancement of tensile properties achieved by the application of high partitioning temperature cycles was not significant.
AB - In this work, four low carbon steels with different contents of Mn and Ni were heat treated by quenching and partitioning (Q&P) cycles where high partitioning temperatures, in the range of 550 °C–650 °C, were applied. In order to elucidate the effect of applying these high partitioning temperatures with respect to more common Q&P cycles, the materials were also heat treated considering a partitioning temperature of 400 °C. The microstructure evolution during the Q&P cycles was studied by means of dilatometry tests. The microstructural characterization of the treated materials revealed that austenite retention strongly depended on the alloy content and partitioning conditions. It was shown that the occurrence of austenite reverse transformation (ART) in the partitioning stage in some of the alloys and conditions was a very effective mechanism to increase the austenite content in the final microstructure. However, the enhancement of tensile properties achieved by the application of high partitioning temperature cycles was not significant.
KW - quenching and partitioning
KW - austenite reverse transformation
KW - Mn and Ni influence
KW - austenite stabilization
UR - http://www.scopus.com/inward/record.url?scp=85087168060&partnerID=8YFLogxK
U2 - 10.3390/met10070862
DO - 10.3390/met10070862
M3 - Article
VL - 10
JO - Metals
JF - Metals
SN - 2075-4701
IS - 7
M1 - 862
ER -