Abstract
Evolutionary engineering of microbes provides a powerful tool for untargeted optimization of (engineered) cell factories and identification of genetic targets for further research. Directed evolution is an intrinsically time-intensive effort, and automated methods can significantly reduce manual labor. Here, design considerations for various evolutionary engineering methods are described, and generic workflows for batch-, chemostat-, and accelerostat-based evolution in automated bioreactors are provided. These methods can be used to evolve yeast cultures for >1000 generations and are designed to require minimal manual intervention.
Original language | English |
---|---|
Pages (from-to) | 255-270 |
Journal | Methods in molecular biology (Clifton, N.J.) |
Volume | 2513 |
DOIs | |
Publication status | Published - 2022 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- Accelerostat
- Automation
- Batch
- Bioreactor
- Chemostat
- Control software
- Evolution