Autonomous Door and Corridor Traversal with a 20-Gram Flapping Wing MAV by Onboard Stereo Vision

Research output: Contribution to journalArticleScientificpeer-review

10 Citations (Scopus)
67 Downloads (Pure)


Autonomous flight of Flapping Wing Micro Air Vehicles (FWMAVs) is a major challenge in the field of robotics, due to their light weight and their flapping-induced body motions. An FWMAV is presented weighing a mere 20 g while all its sensors and processing for autonomous flight are onboard. The navigation is based on a 4-g stereo vision camera with onboard processing. Three basic navigational tasks are demonstrated, namely obstacle avoidance, door traversing and corridor following. The presented combination of sensors and control routines is shown to allow flight in common unprepared environments like corridors and offices. The algorithms do not depend on prior classification or learning of the environment or control logic and work in any unprepared environment with vertical texture. While some failure cases remain, this work forms an important step towards very small autonomous indoor MAV.
Original languageEnglish
Article number69
Number of pages12
JournalAerospace — Open Access Aeronautics and Astronautics Journal
Issue number3
Publication statusPublished - 25 Jun 2018


  • micro air vehicle
  • DelFly
  • flapping wing MAV
  • corridor traversal
  • stereo vision


Dive into the research topics of 'Autonomous Door and Corridor Traversal with a 20-Gram Flapping Wing MAV by Onboard Stereo Vision'. Together they form a unique fingerprint.

Cite this