Autonomous high-temperature healing of surface cracks in Al2O3 containing Ti2AlC particles

Linda Boatemaa*, Myrthe Bosch, Ann Sophie Farle, Guo Ping Bei, Sybrand van der Zwaag, Willem G. Sloof

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

24 Citations (Scopus)
116 Downloads (Pure)


In this work, the oxidation-induced crack healing of Al2O3 containing 20 vol.% of Ti2AlC MAX phase inclusions as healing particles was studied. The oxidation kinetics of the Ti2AlC particles having an average diameter of about 10 μm was studied via thermogravimetry and/or differential thermal analysis. Surface cracks of about 80 μm long and 0.5 μm wide were introduced into the composite by Vickers indentation. After annealing in air at high temperatures, the cracks were filled with stable oxides of Ti and Al as a result of the decomposition of the Ti2AlC particles. Crack healing was studied at 800, 900, and 1000°C for 0.25, 1, 4, and 16 hours, and the strength recovery was measured by 4-point bending. Upon indentation, the bending strength of the samples dropped by about 50% from 402 ± 35 to 229 ± 14 MPa. This bending strength increased to about 90% of the undamaged material after annealing at 1000°C for just 15 minutes, while full strength was recovered after annealing for 1 hour. As the healing temperature was reduced to 900 and 800°C, the time required for full-strength recovery increased to 4 and 16 hours, respectively. The initial bending strength and the fracture toughness of the composite material were found to be about 19% lower and 20% higher than monolithic alumina, respectively, making this material an attractive substitute for monolithic alumina used in high-temperature applications.

Original languageEnglish
Pages (from-to)5684-5693
JournalJournal of the American Ceramic Society
Issue number12
Publication statusPublished - 2018


  • alumina
  • MAX phase
  • oxidation kinetics
  • self-healing
  • TiAlC


Dive into the research topics of 'Autonomous high-temperature healing of surface cracks in Al2O3 containing Ti2AlC particles'. Together they form a unique fingerprint.

Cite this