Abstract
The benefits of doping Cs4EuBr6 and Cs4EuI6 with Sm2+ are studied for near-infrared scintillator applications. It is shown that undoped Cs4EuI6 suffers from a high probability of self-absorption, which is almost completely absent in Cs4EuI6:2% Sm. Sm2+ doping is also used to gain insight in the migration rate of Eu2+ excitations in Cs4EuBr6 and Cs4EuI6, which shows that concentration quenching is weak, but still significant in the undoped compounds. Both self-absorption and concentration quenching are linked to the spectral overlap of the Eu2+ excitation and emission spectra which were studied between 10 K and 300 K. The scintillation characteristics of Cs4EuI6:2% Sm is compared to that of the undoped samples. An improvement of energy resolution from 11% to 7.5% is found upon doping Cs4EuI6 with 2% Sm and the scintillation decay time shortens from 4.8 s to 3.5 s in samples of around 3 mm in size.
Original language | English |
---|---|
Pages (from-to) | 2336-2344 |
Number of pages | 9 |
Journal | Journal of Materials Chemistry C |
Volume | 11 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2023 |