Abstract
Background
Well-trained, well-distributed and productive health workers are crucial for access to high-quality, cost-effective healthcare. Because neither a shortage nor a surplus of health workers is wanted, policymakers use workforce planning models to get information on future labour markets and adjust policies accordingly. A neglected topic of workforce planning models is productivity growth, which has an effect on future demand for labour. However, calculating productivity growth for specific types of input is not as straightforward as it seems. This study shows how to calculate factor technical change (FTC) for specific types of input.
Methods
The paper first theoretically derives FTCs from technical change in a consistent manner. FTC differs from a ratio of output and input, in that it deals with the multi-input, multi-output character of the production process in the health sector. Furthermore, it takes into account substitution effects between different inputs. An application of the calculation of FTCs is given for the Dutch hospital industry for the period 2003–2011. A translog cost function is estimated and used to calculate technical change and FTC for individual inputs, especially specific labour inputs.
Results
The results show that technical change increased by 2.8% per year in Dutch hospitals during 2003–2011. FTC differs amongst the various inputs. The FTC of nursing personnel increased by 3.2% per year, implying that fewer nurses were needed to let demand meet supply on the labour market. Sensitivity analyses show consistent results for the FTC of nurses.
Conclusions
Productivity growth, especially of individual outputs, is a neglected topic in workforce planning models. FTC is a productivity measure that is consistent with technical change and accounts for substitution effects. An application to the Dutch hospital industry shows that the FTC of nursing personnel outpaced technical change during 2003–2011. The optimal input mix changed, resulting in fewer nurses being needed to let demand meet supply on the labour market. Policymakers should consider using more detailed and specific data on the nature of technical change when forecasting the future demand for health workers.
Well-trained, well-distributed and productive health workers are crucial for access to high-quality, cost-effective healthcare. Because neither a shortage nor a surplus of health workers is wanted, policymakers use workforce planning models to get information on future labour markets and adjust policies accordingly. A neglected topic of workforce planning models is productivity growth, which has an effect on future demand for labour. However, calculating productivity growth for specific types of input is not as straightforward as it seems. This study shows how to calculate factor technical change (FTC) for specific types of input.
Methods
The paper first theoretically derives FTCs from technical change in a consistent manner. FTC differs from a ratio of output and input, in that it deals with the multi-input, multi-output character of the production process in the health sector. Furthermore, it takes into account substitution effects between different inputs. An application of the calculation of FTCs is given for the Dutch hospital industry for the period 2003–2011. A translog cost function is estimated and used to calculate technical change and FTC for individual inputs, especially specific labour inputs.
Results
The results show that technical change increased by 2.8% per year in Dutch hospitals during 2003–2011. FTC differs amongst the various inputs. The FTC of nursing personnel increased by 3.2% per year, implying that fewer nurses were needed to let demand meet supply on the labour market. Sensitivity analyses show consistent results for the FTC of nurses.
Conclusions
Productivity growth, especially of individual outputs, is a neglected topic in workforce planning models. FTC is a productivity measure that is consistent with technical change and accounts for substitution effects. An application to the Dutch hospital industry shows that the FTC of nursing personnel outpaced technical change during 2003–2011. The optimal input mix changed, resulting in fewer nurses being needed to let demand meet supply on the labour market. Policymakers should consider using more detailed and specific data on the nature of technical change when forecasting the future demand for health workers.
Original language | English |
---|---|
Article number | 15 |
Journal | Human Resources for Health |
Volume | 15 |
DOIs | |
Publication status | Published - 2017 |
Keywords
- OA-Fund TU Delft