Basic Promotors Impact Thermodynamics and Catalyst Speciation in Homogeneous Carbonyl Hydrogenation

Wenjun Yang, Tejas Y. Kalavalapalli, Annika M. Krieger, Taras A. Khvorost, Ivan Yu Chernyshov, Manuela Weber, Evgeny A. Uslamin, Evgeny A. Pidko*, Georgy A. Filonenko

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

13 Citations (Scopus)
37 Downloads (Pure)


Homogeneously catalyzed reactions often make use of additives and promotors that affect reactivity patterns and improve catalytic performance. While the role of reaction promotors is often discussed in view of their chemical reactivity, we demonstrate that they can be involved in catalysis indirectly. In particular, we demonstrate that promotors can adjust the thermodynamics of key transformations in homogeneous hydrogenation catalysis and enable reactions that would be unfavorable otherwise. We identified this phenomenon in a set of well-established and new Mn pincer catalysts that suffer from persistent product inhibition in ester hydrogenation. Although alkoxide base additives do not directly participate in inhibitory transformations, they can affect the equilibrium constants of these processes. Experimentally, we confirm that by varying the base promotor concentration one can control catalyst speciation and inflict substantial changes to the standard free energies of the key steps in the catalytic cycle. Despite the fact that the latter are universally assumed to be constant, we demonstrate that reaction thermodynamics and catalyst state are subject to external control. These results suggest that reaction promotors can be viewed as an integral component of the reaction medium, on its own capable of improving the catalytic performance and reshaping the seemingly rigid thermodynamic landscape of the catalytic transformation.

Original languageEnglish
Pages (from-to)8129-8137
JournalJournal of the American Chemical Society
Publication statusPublished - 2022

Cite this